摘 要 目的:探讨槲皮素(QUE)对内分泌耐药乳腺癌三苯氧胺(TAM)治疗的增敏作用。
方法:用大剂量TAM冲击法构建TAM耐药乳腺癌细胞株MCF-7/TAM-R并移植裸鼠后,将荷瘤鼠随机分为4组,分别给予溶媒(对照组)、QUE 50 mg/kg 1次/2 d(QUE组)、TAM 5 mg/kg 1次/d(TAM组)、QUE 50 mg/kg 1次/2 d+TAM 5 mg/kg 1次/d(QUE+TAM组)处理,动态观测各组荷瘤鼠的一般情况与瘤体体积的变化,于给药21 d后,处死各组荷瘤鼠,检测瘤体质量及瘤组织ERα、HER-2、pMAPK、MAPK、pAkt、Akt蛋白的表达。
结果:给药过程中,QUE+TAM组和QUE组裸鼠摄食减少、体质量减轻,对照组与TAM组裸鼠无明显异常;至第12天开始,QUE+TAM组瘤体生长呈下降趋势,且第21天明显下降(P<0.05),其余各组瘤体均呈持续增长。与对照组比较,QUE+TAM组瘤体质量明显减轻(P<0.05),而其余两组均无统计学差异(均P>0.05);QUE+TAM组和QUE组瘤组织中ERα蛋白高表达,HER-2、pMAPK、pAkt蛋白低表达,而TAM组上述蛋白表达均无明显差异,各组非磷酸化的MAPK、Akt蛋白表达均无明显差异。
结论:QUE能恢复内分泌耐药乳腺癌对TAM的敏感性,可能与其下调HER-2及其下游信号pMAPK、pAkt的表达,并上调ERα的表达有关;QUE有潜在的毒副作用,其安全范围及有效剂量有待进一步探讨。
关键词 乳腺肿瘤;抗药性,肿瘤;槲皮素;异种移植模型抗肿瘤试验
自1962年Jensen等[1]成功分离出雌激素受体(estrogen receptor,ER),奠定了乳腺癌内分泌治疗的分子基础,长期以来的临床实践确立了乳腺癌内分泌治疗的金标准——三苯氧胺(tamoxifen,TAM)的一线治疗地位,并使众多患者获益。然而有学者[2-3]发现40%初始抗雌激素治疗有效的ER阳性乳腺癌患者,随着疗程的延长会出现继发耐药,而且一旦发生耐药,雌激素受体调节类药物(SERMs)反而会促进肿瘤的生长。获得性雌激素受体抑制剂耐药的问题日益严重,第32届圣安东尼奥乳腺癌大会(SABCS,2009年)首次报道醛糖还原酶抑制剂可以逆转内分泌耐药细胞的耐药性,初步阐明其机制是通过上调ERα及下调HER-2/MAPK的水平[4]。槲皮素(quercetin,QUE)是一种天然植物来源的黄酮类醛糖还原酶抑制剂,具有多种抗肿瘤活性,其机制可能是其具有抑制多种肿瘤细胞的MAPK、Akt信号系统活性[5-7],对乳腺癌细胞,QUE能够下调HER-2的表达[8]。本实验以耐TAM人乳腺癌荷瘤裸鼠为主要研究对象,从实验动物水平观察QUE诱导下TAM对移植瘤的疗效,并初步探讨其作用的分子机制,以期为临床治疗提供一个新的思路和方法。
人乳腺癌细胞MCF-7购自中科院上海细胞资源中心,SPF级BALB/c-nu雌性裸小鼠购自中山大学实验动物中心,胎牛血清、DMEM培养液和0.25%胰蛋白酶购于Gibico公司,QUE、4-羟三苯氧胺(4-hydroxytamoxifen,4-OH-TAM)购自Sigma公司,枸橼酸三苯氧胺(tamoxifen citrate tablets)为阿斯利康公司产品,RIPA蛋白裂解液(强)、PMSF蛋白酶抑制剂、Bradford蛋白浓度测定试剂盒等为碧云天公司产品。抗-ERα、抗-actin购自Santa Cruz,抗-pAkt、抗-MAPK购自Cell Signaling公司,抗-HER-2、抗-Akt、抗-pMAPK、羊抗兔IgG-HRP等购自CST。
常规培养雌激素受体阳性的人乳腺癌细胞株MCF-7,采用高浓度短时间,4-OH-TAM冲击法[9]诱导人乳腺癌TAM耐药细胞株MCF-7/TAM-R:取对数生长期细胞接种于直径10 cm培养皿中,观察细胞生长状态良好,加入4-OH-TAM(终浓度10-6mol/L)并每2~3天换液(含等浓度4-OH-TAM)1次。在上述培养环境培养21 d,收获乳腺癌TAM耐药细胞株MCF-7/TAM-R,并在无药物干预下扩增,在含耐药维持浓度为10-7mol/L的4-OH-TAM培养液中维持MCF-7/TAM-R的耐药性。
1.3.1 建立人TAM耐药乳腺癌动物模型 ⑴ 细胞接种法制备裸鼠皮下移植瘤模型:BALB/c-nu雌性裸小鼠 3只,4~5周龄,体质量 14~18 g,在SPF屏障系统(恒温、恒湿、无菌、净化)中饲养;取对数生长期的人乳腺癌TAM耐药细胞MCF-7/TAM-R,常规胰酶消化后吹打成单细胞悬液,800 r/min离心5 min收集细胞,PBS液清洗2次并重悬细胞,调整细胞浓度至5.0×107/mL,每只裸鼠接种0.2 mL MCF-7/TAM-R单细胞悬液(含细胞5×106个)于一侧背部皮下形成皮丘(避免注射到皮内,穿刺点无液体溢出),观察接种部位肿瘤生长状况,以瘤块直径达1.0 cm为造模标准。⑵ 组织块法制备裸鼠皮下移植瘤模型:细胞接种法制备皮下移植瘤模型成功,断颈处死裸鼠,无菌环境中完整剥离皮下肿瘤作为移植瘤源,剔除周围结缔组织及肿瘤部分坏死组织。取生长活跃的肿瘤边缘组织,无菌生理盐水漂洗后,眼科剪修剪为约2~3 mm3的小组织块,置无菌生理盐水中备用。取4~5周龄BALB/c-nu雌性裸小鼠24只,体质量14~18 g,消毒右侧颈背部皮肤,眼科剪剪开一长约2~4 mm小口,适当游离皮下疏松组织形成一小隧道;眼科镊夹取备好的肿瘤小组织块置入皮下,轻轻压迫、闭合皮肤切口(图1)。观察肿瘤生长情况及致瘤率,以瘤体直径超过0.5 cm为成瘤标准。
图1 组织块法制备裸鼠皮下移植瘤
Figure 1 Subcutaneous tumor transplantation with tumor tissue blocks
1.3.2 荷瘤动物分组 达成瘤标准后,将荷瘤裸鼠随机分为4组,每组6只。⑴ 对照组:二甲基亚砜(DMSO,QUE的空白溶媒,等容积腹腔内注射,1次/2 d)+生理盐水(TAM的空白溶媒,等容积灌服,1次/1 d) 处 理, 至 第21天。 ⑵ QUE组:QUE(50 mg/kg,DMSO稀释腹腔内注射,1次/2 d)[10]+生理盐水(TAM的空白溶媒,等容积灌服,1次/1 d)处理,至第21天;⑶ TAM组:TAM(5 mg/k,生理盐水稀释灌服,1次/1 d)[11]+DMSO(腹腔内注射,1次/2 d)处理,至第21天;⑷ QUE+TAM组:QUE(50 mg/kg,DMSO稀释腹腔内注射,1次/2 d)+TAM(5 mg/kg,生理盐水稀释灌服,1次/1 d)处理,至第21天。
1.3.3 各组荷瘤裸鼠体质量、瘤体体积与瘤体质量 注药前、注药后每3天测量各组荷瘤裸鼠体质量,绘制体质量曲线;用游标卡尺测量肿瘤的最长径(a)和与之垂直的最短径(b),根据公式计算瘤体体积:V(cm3)=ab2×0.52[12],绘制瘤体生长曲线;21 d后拉颈处死裸鼠,剥离皮下肿瘤,测量瘤体质量。
常规RIPA及PMSF提取各组瘤体组织总蛋白,12%SDS-PAGE电泳分离后,转至硝酸纤维素膜上,置5%的脱脂奶粉-PBST封闭液中室温封闭2 h,分别于稀释的一抗:抗-ERα、抗-HER-2、抗-pMAPK、抗-MAPK以及抗-pAkt、抗-Akt中4 ℃过夜。用辣根过氧化物酶偶联的二抗(羊抗兔IgG-HRP)平稳摇动、室温孵育2 h,ECL显色,置于X光片盒中,压片曝光。
采用SPSS 19.0统计软件,统计数据用均数±标准差(±s)表示,单因素方差分析进行统计学处理,两组间比较用LSD法,P<0.05为差异有统计学意义。
用4-OH-TAM高浓度(10-6mol/L)、短时间持续冲击方法成功构建MCF-7/TAM-R细胞。在4-OH-TAM筛选初期,即筛选的第5~10天,MCF-7细胞的增殖活力明显受抑,可以观察到有较多的MCF-7细胞死亡;而到了筛选后期几乎无新的细胞死亡发生。筛选获得的4-OH-TAM耐药细胞株与亲代MCF-7细胞从形态上比较,没有明显差别(图2),MCF-7/TAM-R构建成功。
将瘤源组织块置入裸鼠右侧颈背部皮肤皮下,1周内全部达成瘤标准,成瘤率为100%(24/24)。
图2 亲代MCF-7细胞和TAM耐药MCF-7细胞形态观察(×100)
Figure 2 Morphologic observation of the parent MCF-7 and TAM-resistant MCF-7 (×100)
2.2.1 体质量变化 在用药前期,即用药的前12 d,各组动物摄食良好、活动正常,体质量逐渐增长,TAM组动物体质量增长相对缓慢,但无统计学差异(P>0.05)。2周后QUE+TAM组和QUE组裸鼠摄食减少、体质量减轻,动物消瘦、行动迟缓;第18~21天QUE+TAM组动物体质量明显减轻(均P<0.05),出现反应迟钝、萎靡,部分动物濒临死亡;相对于QUE+TAM组,上述表现在QUE组动物稍轻。而对照组、TAM组动物饮食、活动正常,体质量无明显变化(P>0.05)(图3)。
2.2.2 瘤体体积 对照组、TAM组、QUE组动物的瘤体呈持续增长,其中以TAM组瘤体增长最为迅速,但无统计学差异(P>0.05);而QUE组增长速度相对缓慢、瘤体较小,但亦无统计学差异(P>0.05)。QUE+TAM组在用药的前12 d,瘤体呈逐渐增长趋势,与各对照组基本一致;12~15 d增长速度接近于平台期;而到实验后期(18~21 d),瘤体生长呈下降趋势,逐渐变小,差异有统计学意义(P<0.05)(图4)。
图3 各组荷瘤裸鼠体质量变化
Figure 3 Changes of body weight of the tumor-bearing nude mice in each group
图4 各组荷瘤鼠移植瘤生长趋势
Figure 4 Growth tendency of the xenografts in each groups of mice
2.2.3 瘤体质量 在给药后第21天,24只动物均存活,大体解剖未发现远处转移灶,完整剥离皮下肿瘤、称重(图5A)。与其余各组比较,QUE+TAM组的瘤体质量明显降低(均P<0.05);其余各组间比较差异无统计学意义(P>0.05),尽管没有统计学差异,但QUE组的瘤体质量小于其他两组(图5B)。
图5 给药后第21天各组移植瘤情况
Figure 5 Xenografts in each group at the 21th day of treatment
A:大体标本;B:各组瘤体质量比较
A: Gross specimens; B: Comparison of the tumor weights among groups
Western blot结果显示,与对照组比较,QUE+TAM组和QUE组瘤组织中ERα蛋白的表达明显升高,而HER-2、pERK、pAkt蛋白的表达明显降低,而TAM组以上蛋白表达无明显差异;非酸化的ERK、Akt蛋白表达水平在各组间均无明显差异(图6)。
图6 瘤组织中ERα、HER-2、pMAPK、pAkt、MAPK、Akt蛋白表达检测
Figure 6 Determination of protein expressions of ERα, HER-2,pMAPK, pAkt, MAPK and Akt
乳腺癌内分泌治疗耐药的主要原因是ERα和HER-2信号通路的串话调节(cross talk)。抑制一个信号通路,可使肿瘤细胞在强大的生存压力下激活另一个信号通路,得以继续增殖、侵袭和迁移,产生耐药性。生长因子信号通路的异常激活,使其下游信号通路Ras-Raf-MEK-ERK通路和PI3K-Akt-mTOR通路的过度活化,活化的ERK和Akt激酶促使ER的AF-1及其共调节因子的关键位点磷酸化,出现不依赖配体的ER激活途径,是内分泌治疗耐药的非配体依赖性活性的主要通路,导致肿瘤细胞逃逸[13-15]。
探讨HER-2或其下游信号通路Ras-Raf-MEKERK和PI3K-Akt-mTOR的信号通路的抑制剂,恢复内分泌治疗的敏感性迫在眉睫。Miller等[16]的一项体外实验显示,用HER-2的单克隆抗体曲妥珠单抗或拉帕替尼抑制乳腺癌细胞中HER-2的表达,能够增强ER转录活性,促使ER表达上调,恢复细胞对内分泌药物的敏感性。在来曲唑长时间处理的乳腺癌细胞LTLT-Ca中,Jelovac等[17]发现该细胞系中HER-2、p-Raf、p-MEK1/2及p-MAPK表达上调,以致细胞耐药后磷酸化ER水平提高,导致非配体依赖的ER转录活性上调,虽然ER水平是下降的;而应用MAPK通路抑制剂或酪氨酸激酶抑制剂吉非替尼,LTLT-Ca细胞的生长受到抑制,对来曲唑的敏感性恢复。Macedo等[18]发现应用曲妥株单抗能恢复ER的表达水平,并恢复LTLT-Ca细胞对内分泌治疗的敏感性。PI3K-Akt-mTOR信号通路研究最为成熟的是哺乳动物雷帕霉素靶蛋白(mTOR)抑制剂依维莫司。Bachelot等[19]的研究发现,依维莫司联合TAM能显著改善乳腺癌内分泌治疗的继发耐药。而在芳香化酶抑制剂治疗失败的ER阳性转移性乳腺癌中,依维莫司联合TAM能显著延长无进展生存时间(PFS)和总生存期(OS)[20]。
从天然植物来源中寻找有效逆转TAM耐药的化合物,是一种较为理想的选择。QUE一种天然植物来源的黄酮类活性小分子,能够抑制多种肿瘤细胞MAPK、Akt信号系统活性[5-7],干扰细胞信号转导、抑制肿瘤细胞增殖转移[21-23]、抗肿瘤血管生成[24]等活性。对乳腺癌细胞,QUE能够使HER-2的表达下调[8]。本研究发现,在实验的第12天,QUE+TAM组瘤体的生长呈下降趋势,体积逐渐变小,并且在结束用药后,QUE+TAM组的瘤体质量量显著降低,表明在QUE诱导下,TAM可使人乳腺癌内分泌耐药荷瘤鼠瘤体的生长显著受抑;进而,在对信号通路及分子机制的研究中发现,QUE下调耐药移植瘤组织中HER-2、pERK、pAkt的表达水平,由此阻断了HER-2与ERα的串话调节通路,并且使ERα表达上调,恢复肿瘤组织对内分泌药物的敏感性。
笔者在前期预实验中显示实验动物在每天1次腹腔内注射QUE(50 mg/kg)时,容易形成腹水,同时动物摄食、活动减少,消瘦,反应迟钝,提示QUE具有潜在的毒副作用,为保证动物存活,研究如期进行,由此改良给药频次,由文献[10]报道的“QUE(50 mg/kg)1次/1 d腹腔内注射”改良为“QUE(50 mg/kg)1次/2 d腹腔内注射”。改良后的QUE给药频次并不影响其内分泌耐药的增敏效应,但却不具有文献[10]报道的显著性抑瘤效果,只是相对地使瘤体增长速度减慢、重量减轻。从移植瘤的生长趋势上,以TAM组瘤体增长最为迅速,提示TAM可能促进对内分泌耐药乳腺癌肿瘤的生长,与Schiff等[3]的研究报道一致,但本研究中无统计学差异,需要进一步通过扩大样本量、延长给药时间或改进操作技术等研究来明确。
乳腺癌内分泌耐药带来的高复发转移率和高病死率,使得开发有效的逆转药物迫在眉睫。本文的研究提示,在QUE诱导下,TAM恢复对裸鼠乳腺癌内分泌耐药移植瘤的抑制效应,然而临床上乳腺癌TAM耐药的病因复杂,动物模型不能完全模拟出人体内复杂的内环境,临床效果及安全性方面还有待进一步论证。另外,尽管有文献[25]报道QUE对正常细胞毒性较小,仍有不少学者对QUE的药用安全性提出了质疑,本研究的结果也显示QUE能导致动物摄食减少、消瘦,失去活力,后期动物体质量明显减轻,部分动物濒临死亡,其潜在的毒副作用、安全范围及有效剂量有待进一步探讨。
参考文献
[1] Jensen EV, Jacobson HI. Basic guides to the mechanism of estrogen action[J]. Recent Prog Horm Reg, 1962, 18:387–414.
[2] Tanic N, Milovanovic Z, Tanic N, et al. The impact of PTEN tumor suppressor gene on acquiring resistance to tamoxifen treatment inbreast cancer patients[J]. Cancer Biol Ther, 2012, 13(12):1165–1174. doi: 10.4161/cbt.21346.
[3] Schiff R, Massarweh S, Shou J, et al. Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response[J]. Clin Cancer Res, 2003, 9(1 Pt 2):447S-454S.
[4] Tekmal R, Nair H, Huffman S, et al. Targeting Aldose Reductase:A Novel Strategy in Treating Endocrine Resistance Using Combination Therapy[J]. Cancer Res, 2009, 69(24 Suppl):Abstract nr 67. doi:10.1158/0008–5472.
[5] Ding M, Zhao J, Bowman L, et al. Inhibition of AP-1 and MAPK signaling and activation of Nrf2/ARE pathway by quercitrin[J]. Int J Oncol, 2010, 36(1):59–67.
[6] Ying B, Yang T, Song X, et al. Quercetin inhibits IL-1 beta-induced ICAM-1 expression in pulmonary epithelial cell line A549 through the MAPK pathways[J]. Mol Biol Rep, 2009, 36(7):1825–1832.doi: 10.1007/s11033–008–9386–1.
[7] Nam TW, Yoo CI, Kim HT, et al. The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts[J]. J Bone Miner Metab, 2008, 26(6):551–560. doi: 10.1007/s00774–008–0864–2.
[8] Jeong JH, An JY, Kwon YT, et al. Quercetin-induced ubiquitination and down-regulation of HER-2/neu[J]. J Cell Biochem, 2008,105(2):585–595. doi: 10.1002/jcb.21859.
[9] Coser KR, Wittner BS, Rosenthal NF, et al. Antiestrogen-resistant subclones of MCF-7 human breast cancer cells are derived from a common monoclonal drug-resistant progenitor[J]. Proc Natl Acad Sci U S A, 2009, 106(34):14536–14541. doi: 10.1073/pnas.0907560106.
[10] 吴凯南, 钟晓刚, 马双慰, 等. 槲皮素对人乳腺癌裸鼠移植瘤的抑制作用及其对血管生成的影响[J]. 中国肿瘤临床, 2003,30(6):434–438. doi:10.3969/j.issn.1000–8179.2003.06.016.Wu KN, Zhong XG, Ma SW, et al. Inhibitory Effect of Quercetin on Growth and Angiogenesis of Transplantation Tumor of Breast Cancer Cell line MCF-7 in Nude Mice[J]. Chinese Journal of Clinical Oncology, 2003, 30(6):434–438. doi:10.3969/j.issn.1000–8179.2003.06.016.
[11] 康欣梅, 张清媛, 王恕怀, 等. 三苯氧胺联合人参皂苷Rg3抑制乳腺癌血管生成的研究[J]. 肿瘤, 2008, 28(4):279–281. doi:10.3781/j.issn.1000–7431.2008.04.002.Kang XM, Zhang QY, Wang XH, et al. Antiangiogenic effect of tamoxifen combined with ginsenoside Rg3 on breast carcinoma[J]. Tumor, 2008, 28(4):279–281. doi:10.3781/j.issn.1000–7431.2008.04.002.
[12] Szajda SD, Jankowska A, Zwierz K. Carbohydrate markers in colon carcinoma[J]. Dis Markers, 2008, 25(4/5):233–242.
[13] Viedma-Rodríguez R, Baiza-Gutman L, Salamanca-Gómez F, et al. Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (review)[J]. Oncol Rep, 2014,32(1):3–15. doi: 10.3892/or.2014.3190.
[14] Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer[J]. Annu Rev Med, 2011, 62:233–247. doi: 10.1146/annurev-med-070909–182917.
[15] Barone I, Cui Y, Herynk MH, et al. Expression of the K303R estrogen receptor-alpha breast cancer mutation induces resistance to an aromatase inhibitor via addiction to the PI3K/Akt kinase pathway[J]. Cancer Res, 2009, 69(11):4724–4732. doi:10.1158/0008–5472.CAN–08–4194.
[16] Miller TW, Balko JM, Arteaga CL. Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer[J]. J Clin Oncol, 2011,29(33):4452–4461. doi: 10.1200/JCO.2010.34.4879.
[17] Jelovac D, Sabnis G, Long BJ, et al. Activation of mitogenactivated protein kinase in xenografts and cells during prolonged treatment with aromatase inhibitor letrozole[J]. Cancer Res, 2005,65(12):5380–5389.
[18] Macedo LF, Sabnis G, Brodie A. Preclinical modeling of endocrine response and resistance: focus on aromatase inhibitors[J]. Cancer,2008, 112(3 Suppl):679–688.
[19] Bachelot T, Bourgier C, Cropet C, et al. Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study[J]. J Clin Oncol, 2012,30(22):2718–2724. doi: 10.1200/JCO.2011.39.0708.
[20] Baselga J, Campone M, Piccart M, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer[J]. N Engl J Med, 2012, 366(6):520–529. doi: 10.1056/NEJMoa1109653.
[21] Lee YK, Park SY, Kim YM, et al. AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin[J]. Exp Mol Med, 2009, 41(3):201–207. doi:10.3858/emm.2009.41.3.023.
[22] Castillo-Pichardo L, Martínez-Montemayor MM, Martínez JE, et al.Inhibition of mammary tumor growth and metastases to bone and liver by dietary grape polyphenols[J]. Clin Exp Metastasis, 2009,26(6):505–516. doi: 10.1007/s10585–009–9250–2.
[23] Touil YS, Fellous A, Scherman D, et al. Flavonoid-induced morphological modifications of endothelial cells throughmicrotubule stabilization[J]. Nutr Cancer, 2009, 61(3):310–321. doi:10.1080/01635580802521346.
[24] Ansó E, Zuazo A, Irigoyen M, et al. Flavonoids inhibit hypoxiainduced vascular endothelial growth factor expression by a HIF-1 independent mechanism[J]. Biochem Pharmacol, 2010,79(11):1600–1609. doi: 10.1016/j.bcp.2010.02.004.
[25] 黄春龙, 彭伟, 张继红, 等. quercetin抑制肝细胞癌生长的在体实验研究[J]. 中国普通外科杂志, 2015, 24(6):828–833. doi:10.3978/j.issn.1005–6947.2015.06.012.Huang CL, Peng W, Zhang JH, et al. Quercetin inhibiting growth of hepatocellular carcinoma cells: in vivo experimental study[J].Chinese Journal of General Surgery, 2015, 24(6):828–833.doi:10.3978/j.issn.1005–6947.2015.06.012.
Enhancing effect of quercetin on sensitivity of endocrine-resistant breast cancer to tamoxifen therapy: an in vivo study
Abstract Objective: To investigate the enhancing effect of quercetin (QUE) on sensitivity of endocrine-resistant breast cancer to tamoxifen (TAM) therapy.
Methods: The TAM-resistant breast cancer cell lines (MCF-7/TAM-R) were induced by high dose TAM pulse exposure, and then were transplanted into nude mice. After that, the tumor xenograft-bearing nude mice were randomly divided into 4 groups, and were administrated with vehicles (control group), QUE 50 mg/kg once every 2 days (QUE group), TAM 5 mg/kg once daily (TAM group) or QUE 50 mg/kg once every 2 days plus TAM 5 mg/kg once per day (QUE+TAM group), respectively. The general conditions of the tumor-bearing mice and the volume changes of the tumors were monitored, and the mice in each group were sacrificed at 21th day after treatment, and then the tumor weight and the expressions of ERα, HER-2, pMAPK, MAPK, pAkt and Akt in the tumor tissue were determined.
Results: During treatment, the daily food intake and body weight were significantly reduced in mice of QUE+TAM group and QUE group, but showed no abnormalities in mice of control group and TAM group; the tumor growth started to decrease from the 12th day, and decreased significantly to the 21th day in QUE+TAM group (P<0.05), while the tumors grew continuously in other groups. Compared with control group, the tumor weight was significantly decreased in QUE+TAM group (P<0.05), but showed no significant difference in the other two groups (both P>0.05); the ERα protein expression was increased while HER-2, pMAPK and pAkt protein expressions were decreased markedly in the tumor tissues of QUE+TAM group and QUE group,but the expressions of all above proteins showed no obvious change in TAM control, while the expressions of unphosphorylated MAPK and Akt showed no remarkable changes in any of the groups.
Conclusion: QUE can restore the sensitivity of endocrine-resistant breast cancer to TAM, which may probably be associated with its down-regulating HER-2 and downstream pMAPK and pAkt expressions, and up-regulating ERα expression; QUE has potential toxicity and adverse activities, so its safe dose range and minimum effective dose should be determined.
Key words Breast Neoplasms; Drug Resistance, Neoplasm; Quercetin; Xenograft Model Antitumor Assays
CLC number: R737.9
中图分类号:R737.9
doi:10.3978/j.issn.1005-6947.2017.08.007
http://dx.
doi.org/10.3978/j.issn.1005-6947.2017.08.007
Chinese Journal of General Surgery, 2017, 26(8):993-997.
基金项目:广东省医学科研基金资助项目(A2014664)。
收稿日期:2017-06-15;
修订日期:2017-07-23。
(本文编辑 宋涛)
引用格式:王红鲜, 林秋生, 吉坤美, 等. 槲皮素对内分泌耐药乳腺癌三苯氧胺治疗增敏作用的体内研究[J]. 中国普通外科杂志,2017, 26(8):993-1000.
doi:10.3978/j.issn.1005-6947.2017.08.007
Cite this article as:Wang HX, Lin QS, Ji KM, et al. Enhancing effect of quercetin on sensitivity of endocrine-resistant breast cancer to tamoxifen therapy: an in vivo study[J]. Chin J Gen Surg, 2017,26(8):993-1000.
doi:10.3978/j.issn.1005-6947.2017.08.007