·文献综述·

原发性下肢静脉曲张血管重塑相关基因的研究进展

张婉1 综述 郭振宇2 审校

(1.复旦大学附属华东医院 血管外科,上海 200040;2.复旦大学附属中山医院 血管外科,上海 200032)

摘 要 原发性下肢静脉曲张(PVVs)可表现为静脉迂曲扩张、肢体沉重及肿胀,随病情发展可发生皮肤改变和难愈性溃疡等。PVVs是一种多因素疾病,尽管最常见的原因是瓣膜功能不全和静脉高压,但确切的发病机制仍不清楚,多项研究表明可能与遗传因素相关。近年来,血管重塑作为PVVs触发因素的观点逐渐得到认可,笔者对PVVs血管重塑相关的基因研究进展进行综述。

关键词 静脉曲张;下肢;血管重塑;基因;综述文献

原发性下肢静脉曲张(primary varicose veins,PVVs)是静脉壁稳态丧失引起的慢性静脉疾病(chronic venous diseases,CVDs),其中大隐静脉(great saphenous veins,GSVs)曲张占70%[1];主要表现为静脉迂曲扩张、肢体胀痛,随病情进展可出现皮肤营养改变和溃疡等并发症[2]。目前,全世界约有25%的成年人患有PVVs,女性PVVs的患病率高于男性[1]。在美国,每年增加的PVVs患者超过2万例,CVDs直接医疗费用每年在1.5~10亿美元[3]。在中国,PVVs患者超过1亿,患病率为8.9%[4]

血管重塑是细胞增殖、死亡、迁移以及细胞外基质(extracellular matrix,ECM)合成和降解所致的血管壁结构动态变化过程。PVVs的发病机制涉及局部炎症、平滑肌细胞(smooth muscle cells,SMCs)增殖和凋亡、内皮细胞(endothelial cells,ECs)损伤,ECM成分的改变,血管重塑是静脉壁适应各种病理状态所发生代偿的结果[1]。越来越多证据表明静脉壁重塑可能发生在静脉高压和明显的PVVs出现之前,遗传因素在PVVs的发展中起着重要作用[5]。近年来,PVVs管壁重塑相关基因研究中主要候选基因包括叉头框C2(Forkhead Box C2,FOXC2)[6]、血管内皮生长因子(vascular endothelial growth factor,VEGF)[7]、基质金属蛋白酶(matrix metalloproteinases,MMPs)和MMPs组织抑制物(tissue inhibitor of metalloproteinase,TIMPs)[8]、I型胶原蛋白α2链(COL1A2)基因[2]和非编码RNA(non-coding RNA,ncRNA)。本文对以上基因研究进展作简单综述。

1 FOXC2基因

FOXC2基因位于染色体16q24.3区域,其编码的蛋白质产物共有494个氨基酸残基,在进化上高度保守,是属于人类Forkhead家族的一个转录因子,在心血管、中轴骨骼、眼和生殖泌尿系统的发育上起到不可代替的作用[9]。因此,FOXC2基因和多种疾病相关联,FOXC2的突变可引起严重的心脏发育缺陷而导致胎儿死亡,且FOXC2基因是与原发性下肢表浅静脉和深静脉瓣膜发育缺损联系最密切第一病因基因[10],在淋巴水肿和静脉曲张的患者中可见FOXC2基因的突变[11]。Brice等[12]首先发现FOXC2基因突变是导致遗传性淋巴水肿的原因,推测FOXC2基因突变与PVVs发展相关;FOXC2单倍体缺乏的小鼠模型也显示出与遗传性疾病淋巴水肿-双睫毛综合征患者相似的表现[13]。Ng等[14]对双胞胎行连锁研究证实FOXC2突变在PVVs发展的可遗传性;进一步研究也表明FOXC2突变者在超声检查中存在静脉回流证据(P<0.0001)[10],FOXC2基因的突变可以引起下肢静脉瓣的功能不全和静脉回流,与PVVs的发病有着密切的联系。

C V D s高遗传度表明其病因中有显著的遗传成分。Batayneh等[2]在F O X C 2基因中发现3个特异性单核苷酸多态性(single nucleotide polymorphisms,SNPs),可能引起PVVs的发生。Sumi等[6]总结了382例CVDs患者和372名健康受试者的FOXC2变异情况,结果发现4个SNPs与PVVs发生有关,其中3个位于FOXC2基因5'端,1个位于3'端。此外,患者静脉组织FOXC2 mRNA水平表达量增加(4±1.42)倍(P<0.01),FOXC2蛋白表达水平也明显上调[15]。对FOXC2假定启动子区域变体c.-512C>T(rs34221221:C>T)的功能分析发现,纯合型TT基因型患者与杂合CT和野生CC基因型相比,mRNA和蛋白表达增加;荧光素酶分析表明突变株的转录活性更高。这些发现表明FOXC2基因c.-512C>T变异导致FOXC2在基因和蛋白水平的高表达,影响FOXC2-Dll4信号通路,增加对CVDs的易感性。在转染FoxC2过表达哺乳动物模型的静脉内皮细胞中,也发现Dll4、Hey2等动脉特异性标志物过表达,静脉特异性标志物TFII表达下调,提示曲张静脉的动脉化和异常静脉壁重构与FOXC2-Dll4通路有关[15]

2 VEGF基因

VEGF为高度保守的同源二聚体糖蛋白,能促进血管通透性增加、ECM变性、ECs增殖迁移和血管形成。全基因组关联研究在俄罗斯和英国人群分析PVVs相关基因SNPs中,大多数位于与血管重塑有关基因内或附近,并参与调节炎症反应[2],其中包括血管内皮生长因子A(vascular endothelial growth factor A,VEGF-A)。VEGF-A与PVVs不同过程相关,被证实是P V V s发生的重要因素[16]。Hollingsworth等[17]观察到VEGF(VEGF121/VEGF165)的转录水平和受体在PVVs中增加,反映了VEGF-A在PVVs的早期作用。同样在PVVs中发现VEGF-A和受体VEGFR2表达增加,尤其在血栓性静脉炎的情况下[2]。Shadrina等[16]推测VEGF-A和VEGFR2基因区域的功能性多态性可能影响PVVs的遗传易感性,并评估了这些区域内6个SNPs对俄罗斯族人患PVVs的风险,揭示了变异体等位基因rs2010963 C与降低PVVs发生风险的相关性。

血液淤滞引起的静脉缺氧被认为是PVVs中静脉壁改变的原因[18]。缺氧诱导因子1(hypoxia inducible factor 1,HIF-1)是核转录因子,由HIF-α与HIF-β形成二聚体,结合目标基因缺氧反应元件调节转录反应以改变氧化。体外研究表明,缺氧通过激活HIFs通路导致VEGF释放,促进血管新生[19]。VEGF-A的表达受到缺氧的高度调控,通过促进滋养血管调节减少的组织氧化。在PVVs中,滋养血管密度明显增高,在中膜内1/3处密度最高[20]。VEGF-A作为选择性ECs有丝分裂原,与受体VEGFR-2或VEGFR-1结合,促进ECs增殖、迁移、存活和分化。VEGFR2是VEGF-A的主要信号受体,介导了其在ECs大部分生物活动,而VEGFR1可能作为诱饵受体[21];VEGF-A也能诱导内皮开窗,诱导血管渗漏作用是组胺的5万倍[22]。滋养血管一方面可以代偿提供营养物质的供应,防止血管壁进一步退化和不足[23];另一方面,滋养血管的形成与白细胞的进一步募集、炎症细胞因子的产生以及血管壁重塑有关[20]。VEGF-A也能促进炎症,诱导黏附分子的表达细胞间黏附分子1(ICAM-1)、血管细胞黏附分子1(VCAM-1)和内皮细胞上的E-选择素的表达[24]。此外,VEGF-A可以通过调控基质金属蛋白酶及其抑制剂的合成来影响细胞外基质重构[16]

3 MMPs和TIMPs基因

ECM成分包括胶原、弹力纤维、蛋白聚糖、糖蛋白和糖胺多糖等,对维持下肢静脉管壁的形态和功能具有重要作用[25]。MMPs是一种锌依赖性内肽酶,由成纤维细胞、SMCs和白细胞等不同的静脉壁细胞以非活性形式ProMMPs分泌;ProMMPs被其他MMPs、蛋白酶以及其他内源性和外源性激活剂激活[8],降解包括胶原蛋白和弹性蛋白在内的各种ECM蛋白,并可能影响内皮介导的VSM细胞扩张、迁移和增殖等其他细胞过程,以及SMC中Ca2+信号介导的调节和收缩[26]。TIMPs是MMPs的内源性抑制剂,可调节和抑制MMPs。MMPs/TIMP失衡涉及动脉粥样硬化、高血压、主动脉瘤等多种血管疾病[27]。MMPs在调节静脉结构和功能方面也发挥重要作用,MMPs/TIMP失衡与静脉功能障碍和CVDs的发病机制有关[28]。PVVs患者MMPs/TIMPs平衡破坏,MMPs异常活动增加,促使静脉壁结构的病理改变[29]

MMPs和TIMPs中的基因多态性,提示MMPs或TIMPs的基因突变和PVVs之间潜在的联系。研究[30]表明,PVVs中MMP-1、-2、-3、-7水平升高,且MMP-2活性显著升高。Xu等[31]在中国人群中对MMPs和TIMPs基因进行限制性片段长度多态性分析,PVVs患者与对照组间MMP-9基因-1562C的等位基因频率存在显著差异,提示CC基因型携带者发生PVVs风险可能更高,1562C/T取代被证明上调启动子活性。TIMP-2基因多态性-418G/C可能下调TIMP-2转录,表明了MMP-9和TIMP-2启动子区域的聚合-亲缘与PVVs相关。部分研究没有观察到MMPs和TIMPs在PVVs中表达量的改变[29],原因可能是研究样本不够大,PVVs患者病变部位呈跳跃性分布(呈现萎缩或肥厚不均匀的形态学表现),以及不同阶段的MMPs和TIMPs的表达不同。

MMPs/TIMP在静脉壁的基因表达同时还受到静脉流体静压、缺氧条件和炎症反应调控。炎症细胞因子在白细胞浸润、静脉壁炎症和MMPs表达/活性升高中起桥梁作用[8];其他细胞因子包括白介素IL-17和IL-18可通过NF-κB途径诱导MMPs表达[32]。转化生长因子β(transforming growth factor β,TGF-β)在静脉壁炎症状态时通过各种形式释放,研究证实TGF-β1能直接调控MMPs/TIMP在静脉壁的基因表达[33]

4 COL1A2基因

胶原是维持静脉结构重要基质成分,其中I型胶原和III型胶原是ECM的主要组成部分,占胶原成分的 80%~90%,I型胶原纤维粗大,维持管壁张力;III型胶原纤维纤细,维持管壁弹性[34]。I型胶原由结构上不相连的COL1A1和COL1A2基因分别编码的2条α1链和2条α2构成异三聚体。COL1A2基因位于7q22.1位点,其基因rs42524 多态性与脑出血、颅内动脉瘤、动静脉畸形有密切相关性,且常染色体突变位点能够稳定地传递[35]

胶原比例失调是发生PVVs的重要危险因素,实验和临床研究发现在PVVs中成纤维细胞和SMCs的I型胶原mRNA明显增加,表明PVVs可能与胶原功能障碍有关[36]。Patricia等[37]在对照组和曲张静脉患者培养的静脉SMCs和真皮成纤维细胞中定量测定I型、III型和V型胶原的合成,对培养细胞胶原合成的定量分析表明,静脉曲张患者培养的SMCs和真皮成纤维细胞中III型胶原的比例明显降低,表明静脉曲张患者胶原蛋白III型缺乏,为静脉曲张的异常扩张提供了解释。Jin等[36]在研究COL1A2基因中7-碱基对插入/缺失多态性(rs3917),得出这种多态性上调COL1A2基因的表达,且增加1.6倍发生CVI风险,推测该基因的遗传变异改变其转录活性,影响mRNA结构,并最终允许I型胶原表达上调。I/III型胶原比例失调降低静脉组织顺应性,增加PVVs风险。

5 ncRNA

ncRNA包括长链非编码RNA(long noncoding RNA,lncRNA)和环状RNA(circular RNA,circRNA)等。随着对ncRNA生理病理功能的关注,人们对lncRNA的认识出现了质的飞越。lncRNA是长度>200个核苷酸的非编码RNA,能够在转录及转录后水平上调节蛋白编码基因的表达,参与多种生物过程调控,在调节顺式和反义形式转录、蛋白质的定位方面发挥关键调节作用,还通过影响剪接、编辑、翻译和降解来调节mRNA。lncRNA涉及多种生物进程和人类疾病,如癌症、阿尔茨海默病和心血管疾病,成为遗传学研究热点。Li等[38]使用基因芯片在PVVs中发现显著表达差异的557个lncRNA和980个mRNA,并聚集成6个代谢通路,包括溶酶体、过氧化物酶体、糖酵解、脂肪酸代谢,酪氨酸代谢和嘧啶代谢。GAS5为肿瘤抑制基因,lncRNA-GAS5可抑制环己酰亚胺、雷帕霉素的翻译,控制细胞凋亡。Li等[1]发现lncRNA-GAS5在PVVs中的低表达,并通过膜联蛋白A2促进SMCs的增殖和迁移,提示lncRNA参与PVVs的病理过程。

circRNA大量存在于真核细胞,以共价键形成环形结构,在不同物种间具有高度的保守性。circRNA可作为microRNA“海绵”,调节可变剪接、转录和转录后的基因表达,是继microRNA及lncRNA后RNA家族新的研究热点[39]。高通量测序技术和生物信息学技术的飞速发展大量使circRNA得以逐步被发现,诸多研究表面circRNA在表观遗传学的调控中扮演着重要角色,与其它ncRNA组成高度复杂的调控网络,调节细胞各项生命活动[40]。Zhang等[41]首次检测出PVVs中circRNA的异常表达,包括105个上调circRNA和127下调circRNA;KEGG通路分析显示circRNA异常表达和NF-κB信号通路密切相关。此外,hsa_circ_0006427、hsa_circ_0089810 和hsa_circ_0005267可能是PVVs的诊断标志物。PVVs中化学分析表明谷氨酸、肌醇、牛磺酸和肌苷含量升高,Anwar等[42]对相应microRNA和通路分析显示7个microRNA的差异表达,其中hsamiR-4459、hsa-miR-135a-3p和hsa-miR-216a-5p升高直接影响细胞增殖和存活的信号级联。非编码RNA参与PVVs的多项病理过程,为预防和治疗PVVs提供新的思路。

综上所述,血管重塑是PVVs发生的重要因素,是一种涉及细胞增殖、凋亡、迁移以及ECM合成和降解异常所致的血管壁结构动态变化的过程。PVVs的发生是多基因、多步骤的过程,深入基因水平的研究有助于揭示PVVs的发病机制,为PVVs的诊治提供新的视野,促进从传统手术—微创手术—无创治疗的转变[43]

参考文献

[1] Li L,Li X,The E,et al.Low expression of lncRNA-GAS5 is implicated in human primary varicose great saphenous veins[J].PLoS One,2015,10(3):e0120550.doi:10.1371/journal.pone.0120550.

[2] Bharath V,Kahn SR,Lazo-Langner A.Genetic polymorphisms of vein wall remodeling in chronic venous disease:a narrative and systematic review[J].Blood,2014,124(8):1242-1250.doi:10.1182/blood-2014-03-558478.

[3] Zhang S,Melander S.Varicose Veins:Diagnosis,Management,and Treatment[J].J Nurse Pract,2014,10(6):417-424.doi:doi.org/10.1016/j.nurpra.2014.03.004.

[4] Zhang M,Qiu T,Bu X,et al.A national survey on management of varicose veins in China[J].J Vasc Surg Venous Lymphat Disord,2018,6(3):338-346.doi:10.1016/j.jvsv.2017.10.018.

[5] Krysa J,Jones GT,van Rij AM.Evidence for a genetic role in varicose veins and chronic venous insufficiency[J].Phlebology,2012,27(7):329-335.doi:10.1258/phleb.2011.011030.

[6] Surendran S,Girijamma A,Nair R,et al.Forkhead box C2 promoter variant c.-512C>T is associated with increased susceptibility to chronic venous diseases[J].PLoS One,2014,9(3):e90682.doi:10.1371/journal.pone.0090682.

[7] Birdina J,Pilmane M,Ligers A.The Morphofunctional Changes in the Wall of Varicose Veins[J].Ann Vasc Surg,2017,42:274-284.doi:10.1016/j.avsg.2016.10.064.

[8] Chen Y,Peng W,Raffetto JD,et al.Matrix Metalloproteinases in Remodeling of Lower Extremity Veins and Chronic Venous Disease[J].Prog Mol Biol Transl Sci,2017,147:267-299.doi:10.1016/bs.pmbts.2017.02.003.

[9] Zhu H.Forkhead box transcription factors in embryonic heart development and congenital heart disease[J].Life Sci,2016,144:194-201.doi:10.1016/j.lfs.2015.12.001.

[10] Mellor RH,Brice G,Stanton AW,et al.Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb[J].Circulation,2007,115(14):1912-1920.doi:10.1161/CIRCULATIONAHA.106.675348

[11] Lim CS,Davies AH.Pathogenesis of primary varicose veins[J].Br J Surg,2009,96(11):1231-1242.doi:10.1002/bjs.6798.

[12] Brice G,Mansour S,Bell R,et al.Analysis of the phenotypic abnormalities in lymphoedema-distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24[J].J Med Genet,2002,39(7):478-483.

[13] Dagenais SL,Hartsough RL,Erickson RP,et al.Foxc2 is expressed in developing lymphatic vessels and other tissues associated with lymphedema-distichiasis syndrome[J].Gene Expr Patterns,2004,4(6):611-619.doi:10.1016/j.modgep.2004.07.004.

[14] Ng MY,Andrew T,Spector TD,et al.Linkage to the FOXC2 region of chromosome 16 for varicose veins in otherwise healthy,unselected sibling pairs[J].J Med Genet,2005,42(3):235-239.doi:10.1136/jmg.2004.024075.

[15] Surendran S,S Ramegowda K,Suresh A,et al.Arterialization and anomalous vein wall remodeling in varicose veins is associated with upregulated FoxC2-Dll4 pathway[J].Lab Invest,2016,96(4):399-408.doi:10.1038/labinvest.2015.167.

[16] Shadrina AS,Smetanina MA,Sokolova EA,et al.Allele rs2010963 C of the VEGFA gene is associated with the decreased risk of primary varicose veins in ethnic Russians[J].Phlebology,2018,33(1):27-35.doi:10.1177/0268355516683611.

[17] Hollingsworth SJ,Powell G,Barker SG,et al.Primary varicose veins:altered transcription of VEGF and its receptors(KDR,flt-1,soluble flt-1)with sapheno-femoral junction incompetence[J].Eur J Vasc Endovasc Surg,2004,27(3):259-268.doi:10.1016/j.ejvs.2003.12.015.

[18] Lim CS,Gohel MS,Shepherd AC,et al.Venous hypoxia:a poorly studied etiological factor of varicose veins[J].J Vasc Res,2011,48(3):185-194.doi:10.1159/000320624.

[19] Tang X,Guo D,Lin C,et al.Upregulation of the gene expression of CLOCK is correlated with hypoxia-inducible factor 1alpha in advanced varicose lesions[J].Mol Med Rep,2015,12(4):6164-6170.doi:10.3892/mmr.2015.4223.

[20] Tonar Z,Kural T Jr,Kochová P,et al.Vasa vasorum quanti fication in human varicose great and small saphenous veins[J].Ann Anat,2012,194(5):473-481.doi:10.1016/j.aanat.2012.02.019.

[21] Peach CJ,Mignone VW,Arruda MA,et al.Molecular Pharmacology of VEGF-A Isoforms:Binding and Signalling at VEGFR2[J].Int J Mol Sci,2018,19(4):1-27.pii:E1264.doi:10.3390/ijms19041264.

[22] Roberts WG,Palade GE.Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor[J].J Cell Sci,1995,108(Pt 6):2369-2379.

[23] Mulligan-Kehoe MJ.The vasa vasorum in diseased and nondiseased arteries[J].Am J Physiol Heart Circ Physiol,2010,298(2):H295-305.doi:10.1152/ajpheart.00884.2009.

[24] Kim I,Moon SO,Kim SH,et al.Vascular endothelial growth factor expression of intercellular adhesion molecule 1(ICAM-1),vascular cell adhesion molecule 1(VCAM-1),and E-selectin through nuclear factor-kappa B activation in endothelial cells[J].J Biol Chem,2001,276(10):7614-7620.doi:10.1074/jbc.M009705200.

[25] Sansilvestri-Morel P,Rupin A,Jaisson S,et al.Synthesis of collagen is dysregulated in cultured fibroblasts derived from skin of subjects with varicose veins as it is in venous smooth muscle cells[J].Circulation,2002,106(4):479-483.

[26] Raffetto JD.Pathophysiology of Chronic Venous Disease and Venous Ulcers[J].Surg Clin North Am,2018,98(2):337-347.doi:10.1016/j.suc.2017.11.002.

[27] Reimann C,Brangsch J,Colletini F,et al.Molecular imaging of the extracellular matrix in the context of atherosclerosis[J].Adv Drug Deliv Rev,2017,113:49-60.doi:10.1016/j.addr.2016.09.005.

[28] Maccoll E,Khalil RA.Matrix Metalloproteinases as Regulators of Vein Structure and Function:Implications in Chronic Venous Disease[J].J Pharmacol Exp Ther,2015,355(3):410-428.doi:10.1124/jpet.115.227330.

[29] Serralheiro P,Novais A,Cairrão E,et al.Variability of MMP/TIMP and TGF-beta1 Receptors throughout the Clinical Progression of Chronic Venous Disease[J].Int J Mol Sci,2017,19(1):6.pii:E6.doi:10.3390/ijms19010006.

[30] Sansilvestri-Morel P,Fioretti F,Rupin A,et al.Comparison of extracellular matrix in skin and saphenous veins from patients with varicose veins:does the skin re flect venous matrix changes?[J].Clin Sci(Lond),2007,112(4):229-239.doi:10.1042/CS20060170.

[31] Xu HM,Zhao Y,Zhang XM,et al.Polymorphisms in MMP-9 and TIMP-2 in Chinese patients with varicose veins[J].J Surg Res,2011,168(1):e143-148.doi:10.1016/j.jss.2010.11.002.

[32] Reddy VS,Prabhu SD,Mummidi S,et al.Interleukin-18 induces EMMPRIN expression in primary cardiomyocytes via JNK/Sp1 signaling and MMP-9 in part via EMMPRIN and through AP-1 and NF-kappaB activation[J].Am J Physiol Heart Circ Physiol,2010,299(4):H1242-1254.doi:10.1152/ajpheart.00451.2010.

[33] Serralheiro P,Cairrao E,Maia CJ,et al.Effect of TGF-beta1 on MMP/TIMP and TGF-beta1 receptors in great saphenous veins and its signi ficance on chronic venous insufficiency[J].Phlebology,2017,32(5):334-341.doi:10.1177/0268355516655067.

[34] Ghaderian SM,Khodaii Z.Tissue remodeling investigation in varicose veins[J].Int J Mol Cell Med,2012,1(1):50-61.

[35] Liu W,Pang B,Lu M,et al.The rs42524 COL1A2 polymorphism is associated with primary intracerebral hemorrhage in a Chinese population[J].J Clin Neurosci,2012,19(12):1711-1714.doi:10.1016/j.jocn.2012.03.025.

[36] Jin Y,Xu G,Huang J,et al.Analysis of the association between an insertion/deletion polymorphism within the 3' untranslated region of COL1A2 and chronic venous insufficiency[J].Ann Vasc Surg,2013,27(7):959-963.doi:10.1016/j.avsg.2013.04.001.

[37] Sansilvestri-Morel P,Rupin A,Badier-Commander C,et al.Chronic venous insufficiency:dysregulation of collagen synthesis[J].Angiology,2003,54(Suppl 1):S13-18.doi:10.1177/0003319703054001S03.

[38] Li X,Jiang X Y,Ge J,et al.Aberrantly expressed lncRNAs in primary varicose great saphenous veins[J].PLoS One,2014,9(1):e86156.doi:10.1371/journal.pone.0086156.

[39] Li X,Yang L,Chen LL.The Biogenesis,Functions,and Challenges of Circular RNAs[J].Mol Cell,2018,71(3):428-442.doi:10.1016/j.molcel.2018.06.034.

[40] Chen LL.The biogenesis and emerging roles of circular RNAs[J].Nat Rev Mol Cell Biol,2016,17(4):205-211.doi:10.1038/nrm.2015.32.

[41] Zhang W,Li L,Si Y,et al.Identification of aberrant circular RNA expression and its potential clinical value in primary great saphenous vein varicosities[J].Biochem Biophys Res Commun,2018,499(2):328-337.doi:10.1016/j.bbrc.2018.03.156.

[42] Anwar MA,Adesina-Georgiadis KN,Spagou K,et al.A comprehensive characterisation of the metabolic pro file of varicose veins; implications in elaborating plausible cellular pathways for disease pathogenesis[J].Sci Rep,2017,7(1):2989.doi:10.1038/s41598-017-02529-y.

[43] 刘宏斌,曹廷宝,韩晓鹏,等.腔内激光联合Trivex旋切术治疗重度下肢浅静脉曲张的临床效果[J].中国普通外科杂志,2014,23(12):1689-1692.doi:10.7659/j.issn.1005-6947.2014.12.018.Liu HB,Cao TB,Han XP,et al.Endovenous laser therapy combined with transilluminated powered phlebectomy for severe varicose veins of lower limbs[J].Chinese Journal of General Surgery,2014,23(12):1689-1692.doi:10.7659/j.issn.1005-6947.2014.12.018.

Research progress of genes associated with vascular remodeling in lower limb primary varicose veins

ZHANG Wan1,GUO Zhenyu2

(1.Department of Vascular Surgery,Affiliated Huadong Hospital,Fudan University,Shanghai 200040,China; 2.Department of Vascular Surgery,Affiliated Zhongshan Hospital,Fudan University,Shanghai 200032,China)

Abstract Lower extremity primary varicose veins(PVVs)can manifest as distended and tortuous veins as well as limb heaviness and swelling,and can be associated with skin changes and refractory ulcers at an advanced stage.PVVs is a multifactorial disease,and although valvular incompetence and venous hypertension are regarded to be the most common causes,the exact pathogenesis remains unclear.Various studies have suggested a potential genetic contribution.Recently,vascular remodeling has been recognized as a trigger factor for PVVs.The authors address the research progress of genes associated with vascular remodeling in PVVs.

Key words Varicose Veins; Lower Extremity; Vascular Remodeling; Genes; Review

中图分类号:R654.3

doi:10.7659/j.issn.1005-6947.2018.12.016

http://dx.doi.org/10.7659/j.issn.1005-6947.2018.12.016

Chinese Journal of General Surgery,2018,27(12):1597-1602.

收稿日期:2018-07-08;

修订日期:2018-11-12。

作者简介:张婉,复旦大学附属华东医院副主任医师,主要从事血管外科干细胞与组织工程方面的研究。

通信作者:郭振宇,Email:17211210037@fudan.edu.cn

CLC number: R654.3

(本文编辑 姜晖)

本文引用格式:张婉,郭振宇.原发性下肢静脉曲张血管重塑相关基因的研究进展[J].中国普通外科杂志,2018,27(12):1597-1602.doi:10.7659/j.issn.1005-6947.2018.12.016

Cite this article as: Zhang W,Guo ZY.Research progress of genes associated with vascular remodeling in lower limb primary varicose veins[J].Chin J Gen Surg,2018,27(12):1597-1602.doi:10.7659/j.issn.1005-6947.2018.12.016