肝细胞癌(hepatocellular carcinoma,HCC)是全世界最为凶险的恶性肿瘤。2018年肝癌在中国的发病率排名第5位,其中是男性病死率排名肿瘤死亡第3位,女性病死率排名第7位[1]。相较以往单纯手术,HCC诊治手段不断丰富,微创介入、消融微波还有放疗等局部治疗手段的大量临床应用,HCC局部控制率与短期疗效较以往有明显提高[2]。但远期疗效较差,极易出现复发与转移,如何遏制HCC进一步生长与发展仍是亟待解决的问题[3]。近年来缺氧与HCC发生、发展关系的研究逐渐成为热点。越来越多的研究表明,缺氧在HCC发生发展中发挥了重要的作用,揭示其具体机制和通路对于临床治疗有重要指导意义。
2019年诺贝尔生物或医学奖颁给William、Kaelin和Gregg,因其证实了氧气浓度变化可以调控细胞。在他们的研究中指出缺氧对于细胞的生物活动有明显的影响。而缺氧具体定义是指对细胞、组织、器官的供氧不足或细胞氧利用受损,最终导致细胞、组织、器官的功能障碍[4]。肝脏是氧气交汇的器官,其既接受来自肝动脉的氧合血液(30%),也接受来自门静脉的脱氧血液(70%)[5]。肝窦中的血流相对较慢,而肝细胞的代谢率相对较高。肝脏生理构造和血液供养决定了任何外界影响都会引起肝脏氧含量的变化。研究[6]表明肝细胞在病毒感染,有毒物质暴露或炎症后特别容易发生原发性或继发性缺氧。James等[7]研究发现暴露于内毒素后,尽管心脏输出增加,动脉血氧饱和度和肝动脉血流未受影响,但小鼠肝脏窦状隙PO2减少了75%,明显出现缺氧。Höckel等[8]认为肝脏损伤后容易诱发缺氧,缺氧以及缺氧诱导的基因突变,可能驱动了肝细胞癌变。
HCC的发展是一个复杂的病理过程,其中缺氧和相关的氧化应激是HCC发生发展重要的外界因素。研究已证实缺氧参与肿瘤增殖、转移等一系列活动[9]。对于HCC,低氧肿瘤微环境可以驱动增强HCC生长并且促进其复发与转移[10]。Choi等[11]评估肿瘤干细胞样(cancer stem cells,CSC)与缺氧关系,研究[12]表明HCC干细胞样上调的基因与代谢、血管生成和缺氧有关,缺氧或者缺氧引起的血管生成导致细胞应激适应并最终导致HCC发生。在介入治疗中,HCC对治疗引起的缺氧反应对预后有判断价值。Chiu等[13]研究表明在肝细胞癌中,缺氧诱导癌细胞上三核苷三磷酸二磷酸水解酶2(ENTPD2、CD39L1)的表达,从而使HCC细胞逃避免疫监视,避免肿瘤细胞增殖受到限制。缺氧通过多种途径促进HCC细胞上皮-间质转化(epithelial to mesenchymal transition,EMT),促进HCC 细胞增殖与转移。证据证实缺氧分别上调人Twist相关蛋白1(Twist1)的表达[14]、诱导监理蛋白(supervillin)[15]以及调控NOX4表达引发活性氧(reactive oxygen species,ROS)介导的GLI1[16]等多个途径促进HCC 细胞E M T,增加HCC 细胞转移和侵袭的能力。此外研究证实缺氧激活的p-Smad3依赖性转化生长因子β信号通路(transforming growth factor β,TGF-β)信号传导,间接促进血管扩张剂刺激的磷蛋白(VASP)的表达,VASP激活Akt和ERK信号通路,并通过改变EMT表型和基质金属蛋白酶 (MMPs)的表达促进体外和体内HCC的迁移和 侵袭[17]。
临床上,缺氧被认为是HCC 的独立不良预后因素。低氧诱导因子1α(hypoxia inducible factor-1α,HIF-1α)、低氧诱导因子2α(hypoxia inducible factor-2α,HIF-2α)、基质金属蛋白酶(matrixmet alloprote in a se,MMP)、高迁移率族蛋白1(high mobility group box 1 protein,HMGB1)、自噬基因Beclin-1、神经红蛋白(neuroglobin,NGb)和碳酸酐酶IX(carbonic anhydrase-IX,CA-IX)等,均参与HCC中的缺氧诱导效应,临床上作为缺氧的标志物。其中部分指标对于HCC的预后有预测意义。多项研究发现HIF-1α与肿瘤预后的关系。Wang等[18]证实与健康人群和肝硬化患者相比,HCC患者血清中HIF-1α水平明显升高,其水平越高反映HCC预后越差。Zou等[19]在138例患者队列的免疫组化实验分析中,成纤维细胞活化蛋白(FAP)和HIF-1α的表达水平显着相关。在缺氧条件下HCC细胞中FAP的上调可以预示患者的预后不良。Yang等[20]报道,与肿瘤周围组织相比,HCC病灶中HIF-2α表达较少,但HIF-2α水平较高的患者总生存期(overall survival,OS)长。研究[21]表明随访12个月后,证实MMP-1表达水平与肝移植后的AFP水平相当。在肝移植的患者中,两种标志物的水平在肝移植后6个月升高,预测存在复发可能,因此作为HCC 肝移植后监测复发有价值的标志物,其可用于肝移植后的HCC随访。Finkelmeier等[22]观察215例HCC患者,得出结论证实CA-IX是晚期HCC中无病生存期(disease-free survival,DFS)和OS的不良预测因子。同时认为CA-IX的水平升高反应死亡风险增加。Hyuga等[23]总结117例HCC接受肝切除术的患者中CA-IX表达。研究表明,CA-IX表达是HCC根治性手术后预后不良的关键预测因素。
HIF(包括HIF1、2和3)是异二聚体转录因子(α和β亚基),对缺氧产生响应。其中HIF-1α是缺氧最重要的标志物。多项研究表明,HIF-1α与白细胞介素8(IL-8)关系密切。Feng等[24]证实HIF-1α在HCC细胞中显著表达,并发现IL-8与其存在依赖关系。并且缺氧通过HIF-1α-IL-8-Akt轴促进HCC细胞迁移和侵袭[25]。Zhang等[26]发现,在持续和严重的缺氧微环境中癌细胞和肿瘤相关巨噬细胞之间的HIF-1α、IL-1-信号传导环激活,导致HCC细胞EMT和转移。人类丙酮酸激酶(pyruvate kinase,PK)参与糖酵解,其基因M2型(PKM2)在多种癌细胞中过表达。Wang等[27] 证实缺氧环境下HIF-1α、PKM2通路相关的代谢变化可能促进COX2诱导的HCC细胞凋亡抗性。缺氧环境下,HIF-1α转录受到多种因素诱导。Wen等[28]发现Bcl-2相关转录因子(Bcl2 associated transcription factor 1,Bclaf1)通过其bZIP结构域促进HIF-1α转录,随后导致HIF-1α下游靶标血管内皮生长因子A(vascular endothelial growth factor A,VEGFA),转化生长因子β(TGF-β)和促红细胞生成素(EPO)的转录增加,其反过来促进HCC细胞的存活和繁殖。Ye等[29]体外实验也证实在缺氧条件下HIF-1α的转录受到组蛋白去乙酰化酶5诱导,从而加强了HCC细胞的迁移和侵袭。此外,缺氧条件下HIF-1α激活下游靶基因δ-连环蛋白也可促进HCC增殖和转移[30]。
与HIF-1α一样,HIF-2α也是缺氧诱导因子家族成员。氧气浓度的降低对于其产生调控,进而影响多种基因的表达,这与肿瘤发展机制有直接关联[31]。对来自7项独立研究1066例中国HCC患者进行的Meta分析显示,较高的HIF-2α与肿瘤浸润、静脉侵犯、组织学分级相关,但与HCC预后无关[32]。Cao等[33]研究表明HIF-2α和CUB结构域蛋白1(CDCP1)均在低氧条件下可被诱导,CDCP1的表达受HIF-2α调节,抑制HIF-2α、CDCP1对HCC转移中起一定的遏制作用。Wang等[34]证明HCC 细胞分泌可溶性干细胞因子(soluble stem cell factor,S-SCF)以促进人脐静脉内皮细胞(human umbilical vascular endothelial cells,HUVEC)的血管生成。通过HIF-2α选择性依赖性机制,在低氧条件下调节HCC中S-SCF的过表达,促进HCC转移。总之,在某些细胞环境中,HIF-2α在调节HCC细胞的缺氧反应中发挥促进肿瘤生长侵袭的作用。
MMPs是调节肿瘤微环境的关键分子参与者[35]。MMPs家族的几个成员(包括MMP1、2、3和9)在人类HCC组织中被上调,这有助于体外HCC的迁移、侵袭。Qin等[36]报道MMP-8在高度侵袭性HCC患者中与肿瘤生长因子b1共表达,可以反映病情的凶险程度。García-Irigoyen等[37]报道MMP10在人HCC和二乙基亚硝胺诱导的小鼠HCC中均被上调。在缺氧期间,MMP10通过Erk介导的信号传导途径在HCC细胞中上调,加强肺转移的倾向。
HMGB1 是与缺氧诱导的核损伤相关分子,其与HCC 侵袭和转移相关。HCC 患者血中较高的HMGB1 与较短的OS 以及无进展生存期(progression-free survival,PFS)之间存在显着的相关性[38]。Tohme等[39]揭示在缺氧期间,HMGB1从细胞核转移到细胞质并与细胞质Toll样受体-9(Toll-like receptors-9,TLR-9)结合。这种结合促进HCC 肿瘤存活和增殖。Chen 等[40] HMGB1 在调节YES相关蛋白(yes-associated protein,YAP)发挥保护HCC细胞过度糖酵解并促进HCC细胞生长。Jiang等[41]研究表明缺氧暴露以HIF-1α依赖性方式在小鼠的肝细胞瘤细胞中产生HMGB1表达,并随后诱导巨噬细胞的浸润和重编程以增强IL-6的表达,促进小鼠HCC细胞的侵袭和转移。
Beclin-1是自噬的标志物,在包括HCC在内各种癌症发生、发展过程中起重要作用。Osman等[42]报道自噬标记物Beclin-1的表达与HCC中HIF-1α的表达相关。相比低HIF-1α组,在高HIF-1α组,更多的HCC细胞Beclin-1表达阳性,表明缺氧可能在HCC发展期间激活自噬促进肿瘤增殖。
Ngb是一种含有单体血红素的球蛋白,一种作为氧、活性氧(ROS)传感器的细胞内六配位球蛋白,Hota等[43-44]均证实HCC中Ngb的下调与慢性缺氧期间神经元中Ngb水平的变化一致,提示慢性缺氧可能是控制HCC中Ngb表达的主要因素。进一步的研究[45]表明,Ngb在体内和体外抑制了HCC的增殖。
细胞红蛋白(cytoglobin,Cygb)是一种人类六配位血红蛋白家族的成员,并且作为氧化还原稳态的动态介质。Zhang等[46]发现Cygb在人HCC组织中显着失调,并且其降低了肝癌干细胞(liver cancer stem cells,LCSC)的生长并增加了CD133(+)LCSC的亚群。Cygb修复体抑制HCC增殖和LCSC生长。总的来说,该研究表明,Cygb作为肿瘤抑制因子起作用。
microRNAs是进化上保守且广泛存在于真核生物中的一类非编码单链小RNA,Hu等[47]研究表明miRNA在HCC细胞的缺氧反应中的转录和磷酸化中起重要作用。miRNA家族在低氧环境下参与了HCC细胞发生发展全过程。研究[48]表明microRNA-200a(miR-200a)与转移相关的肺腺癌转录本1(MALAT1)相互作用,并参与低氧Hep3B细胞的增殖,迁移,侵袭和凋亡。Xiao等[49]研究结果表明发现雄激素受体(androgen receptor,AR)、miR-520f-3p、SOX9通过增加LCSC群体参与改变HCC细胞在缺氧条件下对索拉非尼治疗的敏感性,缺氧可能通过改变AR、miR-520f-3p、SOX9信号传导增加LCSC群体。
各种实体瘤在其生殖周期中经历以下3 个阶段:肿瘤细胞的增殖,缺氧和肿瘤血管生成。缺氧与肿瘤新生血管的产生密切相关。Matsuura等[50]表明microRNAs家族中的重要成员miR-155在缺氧条件下均显着上调,对HCC血管形成有促进作用。研究[51]表明低氧条件下诱导B细胞淋巴瘤因子9(B-cell lymphoma 9,BCL9),BCL9不但促进HCC的增殖,迁移,更促进肿瘤新生血管生成。BCL9成成为HCC 缺氧与新生血管之间的桥梁。另有研究[34]表明低氧条件下HIF-2α究通过干细胞因子(stem cell factor,SCF)启动子中的缺氧反应元件直接诱导SCF基因的转录,调节HCC中SCF的过表达,SCF促进了HUVEC的血管生成。在血管生成素中,由内皮细胞促血管生成素2(angiopoietin-2,Ang-2)产生的另一个促血管生成因子家族,可以引发或激活血管内皮促进新生血管。新形成的肿瘤血管表现出结构和功能缺陷,进一步加剧缺氧并导致形成“恶性循环”,其在局部肿瘤复发和远处转移中起重要作用[52]。同时研究[53]发现:不同的低氧暴露对于HCC细胞的血管生成影响也不同,与急性低氧暴露的HCC细胞相比,间歇性低氧暴露的HCC 细胞促血管生成作用能力明显降低。间歇性缺氧可以减轻急性缺氧引起的VEGF的增加,并降低HCC细胞的促血管生成潜能,此研究对于临床治疗有指导意义。经导管血管栓塞术(transcatheter arterial embolization,TAE)是常见的HCC治疗手段,TAE复发的机制与缺氧、新生血管有关。一些作者认为后栓塞缺氧是肿瘤新血管生成的“原始动向”。VEGF在这一过程中是HCC患者中最重要的血管生成因子之一;而VEGF具有促进肿瘤生长的特点[54]。TAE诱导HCC缺血性坏死,在持续缺氧条件下,存活的肿瘤组织因TAE诱导发生血管生成反应,这个反应维持剩余肿瘤组织继续存活[55]。近年来不断涌现的HCC靶向治疗,临床效果不一,疗效除了与其治疗靶点有关外,缺氧也对其产生一定影响。Méndez-Blanco等[56]研究表明,持续索拉非尼治疗的患者,抗血管生成作用诱导微血管密度降低,促进肿瘤内缺氧和HIF介导的细胞反应,促进缺氧微环境的抗性细胞出现,导致索拉非尼耐药。阿帕替尼除了抑制肿瘤新生血管,更利用下调HIF-1α的表达,增加活性氧水平纠正HCC细胞内的缺氧环境,进一步减少因缺氧诱导而产生耐药细胞的产生,其抑制HCC生长的作用更强于索拉菲尼[57]。
以上是近年来缺氧在HCC 发生发展及治疗中的最新进展。研究提示缺氧标志物对HCC预后具有重要意义,体内体外实验均证实它们受到缺氧的诱导,对HCC生长、侵袭与转移产生重要影响。研究还揭示了缺氧参与HCC肿瘤血管新生,解决缺氧诱导肿瘤血管新生,可以有效抑制HCC复发和转移,对于临床有一定指导意义。
[1] Bray F,Ferlay J,Soerjomataram I,et al.Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].CA Cancer J Clin,2018,68(6):394–424.doi:10.3322/caac.21492.
[2] 李民,熊俊.《原发性肝癌诊疗规范(2017年版)》解读[J].中国普通外科杂志,2019,28(7):785–789.doi:10.7659/j.issn.1005– 6947.2019.07.003.
Li M,Xiong J.Interpretation of guidelines for diagnosis and treatment of primary liver cancer (2017 edition)[J].Chinese Journal of General Surgery,2019,28(7):785–789.doi:10.7659/j.issn.1005–6947.2019.07.003.
[3] 陈世发,赵礼金.肝癌发生发展机制的研究进展及其治疗现状[J].中国普通外科杂志,2018,27(7):910–923.doi:10.3978/j.issn.1005–6947.2018.07.016.
Chen SF,Zhao LJ.Research progress on mechanisms for occurrence of liver cancer and its treatment status[J].Chinese Journal of General Surgery,2018,27(7):910–923.doi:10.3978/j.issn.1005–6947.2018.07.016.
[4] Claiborn K.William G.Kaelin Jr.and Gregg L.Semenza receive the 2012 ASCI/Stanley J.Korsmeyer Award[J].J Clin Invest,2012,122(4):1136–1137.doi:10.1172/jci63264.
[5] Jungermann K,Kietzmann T.Oxygen:modulator of metabolic zonation and disease of the liver[J].Hepatology,2000,31(2):255–260.doi:10.1002/hep.510310201.
[6] Li W,Wang R,Xie H,et al.Changes of pathological and physiological indicators affecting drug metabolism in rats after acute exposure to high altitude [J].Exp Ther Med,2015,9(1):98–104.doi:10.3892/etm.2014.2049.
[7] James PE,Madhani M,Roebuck W,et al.Endotoxin-induced liver hypoxia:defective oxygen delivery versus oxygen consumption[J].Nitric Oxide,2002,6(1):18–28.doi:10.1006/niox.2001.0383.
[8] Höckel M,Vaupel P.Tumor hypoxia:definitions and current clinical,biologic,and molecular aspects[J].J Natl Cancer Inst,2001,93(4):266–276.doi:10.1093/jnci/93.4.266.
[9] Severi T,van Malenstein H,Verslype C,et al.Tumor initiation and progression in hepatocellular carcinoma:risk factors,classification,and therapeutic targets[J].Acta Pharmacol Sin,2010,31(11):1409–1420.doi:10.1038/aps.2010.142.
[10] Zheng H,Bi FR,Yang Y,et al.Downregulation of miR-196–5p Induced by Hypoxia Drives Tumorigenesis and Metastasis in Hepatocellular Carcinoma[J].Horm Cancer,2019,10(4–6):177–189.doi:10.1007/s12672–019–00370–5.
[11] Choi SH,Lee SW,Ok M,et al.Gene Expression Profiling of Hepatocellular Carcinoma Derived Cancer Stem Like Cell under Hypoxia[J].Yonsei Med J,2017,58(5):925–933.doi:10.3349/ymj.2017.58.5.925.
[12] Ippolito D,Fior D,Bonaffini PA,et al.Quantitative evaluation of CT-perfusion map as indicator of tumor response to transarterial chemoembolization and radiofrequency ablation in HCC patients[J].Eur J Radiol.2014,83(9):1665–1671.doi:10.1016/j.ejrad.2014.05.040.
[13] Chiu DK,Tse AP,Xu IM,et al.Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma[J].Nat Commun,2017,8(1):517.doi:10.1038/s41467–017–00530–7.
[14] Zhang XD,Dong XQ,Xu JL,et al.Hypoxia promotes epithelialmesenchymal transition of hepatocellular carcinoma cells via inducing Twist1 expression[J].Eur Rev Med Pharmacol Sci,2017,21(13):3061–3068.
[15] Chen X,Zhang S,Wang Z,et al.Supervillin promotes epithelialmesenchymal transition and metastasis of hepatocellular carcinoma in hypoxia via activation of the RhoA/ROCK-ERK/p38 pathway[J].J Exp Clin Cancer Res,2018,37(1):128.doi:10.1186/s13046–018–0787–2.
[16] Liu Z,Tu K,Wang Y,et al.Hypoxia Accelerates Aggressiveness of Hepatocellular Carcinoma Cells Involving Oxidative Stress,Epithelial-Mesenchymal Transition and Non-Canonical Hedgehog Signaling[J].Cell Physiol Biochem,2017,44(5):1856–1868.doi:10.1159/000485821.
[17] Liu Z,Wang Y,Dou C,et al.Hypoxia-induced up-regulation of VASP promotes invasiveness and metastasis of hepatocellular carcinoma[J].Theranostics,2018,8(17):4649–4663.doi:10.7150/thno.26789.
[18] Wang D,Zhang X,Lu Y,et al.Hypoxia inducible factor 1alpha in hepatocellular carcinoma with cirrhosis:Association with prognosis[J].Pathol Res Pract,2018,214(12):1987–1992.doi:10.1016/j.prp.2018.09.007.
[19] Zou B,Liu X,Zhang B,et al.The Expression of FAP in Hepatocellular Carcinoma Cells is Induced by Hypoxia and Correlates with Poor Clinical Outcomes[J].J Cancer,2018,9(18):3278–3286.doi:10.7150/jca.25775.
[20] Yang SL,Liu LP,Niu L,et al.Downregulation and pro-apoptotic effect of hypoxia-inducible factor 2 alpha in hepatocellular carcinoma[J].Oncotarget,2016,7(23):34571–34581.doi:10.18632/oncotarget.8952.
[21] Sánchez-Lorencio MI,Saenz L,Ramirez P,et al.Matrix Metalloproteinase 1 as a Novel Biomarker for Monitoring Hepatocellular Carcinoma in Liver Transplant Patients[J].Transplant Proc,2018,50(2):623–627.doi:10.1016/j.transproceed.2017.11.061.
[22] Finkelmeier F,Canli Ö,Peiffer KH,et al.Circulating hypoxia marker carbonic anhydrase IX (CA9) in patients with hepatocellular carcinoma and patients with cirrhosis[J].PLoS One,2018,13(7):e0200855.doi:10.1371/journal.pone.0200855.
[23] Hyuga S,Wada H,Eguchi H,et al.Expression of carbonic anhydrase IX is associated with poor prognosis through regulation of the epithelial-mesenchymal transition in hepatocellular carcinoma[J].Int J Oncol,2017,51(4):1179–1190.doi:10.3892/ijo.2017.4098.
[24] Feng W,Xue T,Huang S,et al.HIF-1αlpha promotes the migration and invasion of hepatocellular carcinoma cells via the IL-8-NFkappaB axis[J].Cell Mol Biol Lett,2018,23:26.doi:10.1186/s11658–018–0077–1.
[25] Fei M,Guan J,Xue T,et al.Hypoxia promotes the migration and invasion of human hepatocarcinoma cells through the HIF-1αlpha-IL-8-Akt axis[J].Cell Mol Biol Lett,2018,23:46.doi:10.1186/s11658–018–0100–6.
[26] Zhang J,Zhang Q,Lou Y,et al.Hypoxia-inducible factor-1α/interleukin-1β signaling enhances hepatoma epithelial-mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment[J].Hepatology,2018,67(5):1872–1889.doi:10.1002/hep.29681.
[27] Wang Q,Lu D,Fan L,et al.COX-2 induces apoptosis-resistance in hepatocellular carcinoma cells via the HIF-1α/PKM2 pathway[J].Int J Mol Med,2019,43(1):475–488.doi:10.3892/ijmm.2018.3936.
[28] Wen Y,Zhou X,Lu M,et al.Bclaf1 promotes angiogenesis by regulating HIF-1αlpha transcription in hepatocellular carcinoma[J].Oncogene,2019,38(11):1845–1859.doi:10.1038/s41388–018–0552–1.
[29] Ye M,Fang Z,Gu H,et al.Histone deacetylase 5 promotes the migration and invasion of hepatocellular carcinoma via increasing the transcription of hypoxia-inducible factor-1α under hypoxia condition[J].Tumour Biol,2017,39(6):1010428317705034.doi:10.1177/1010428317705034.
[30] Huang F,Chen J,Lan R,et al.Hypoxia induced δ-Catenin to enhance mice hepatocellular carcinoma progression via Wnt signaling[J].Exp Cell Res,2019,374(1):94–103.doi:10.1016/j.yexcr.2018.11.011.
[31] 潘婷婷,许戈良.缺氧诱导因子2 与肝癌的研究进展[J].中国普通外科杂志,2015,24(1):100–104.doi:10.3978/j.issn.1005–6947.2015.01.019.
Pan TT,Xu GL.Role of hypoxia inducible factor 2 in hepatocellular carcinoma:recent advances[J].Chinese Journal of General Surgery,2015,24(1):100–104.doi:10.3978/j.issn.1005–6947.2015.01.019.
[32] Yao Q,Lv Y,Pan T,et al.Prognostic significance and clinicopathological features of hypoxic inducible factor-2alpha expression in hepatocellular carcinoma[J].Saudi Med J,2015,36(2):170–175.doi:10.15537/smj.2015.2.10554.
[33] 曹曼卿,高君蓉,黄佳飞,等.缺氧诱导因子2α对含CUB结构域蛋白1的调控及在肝癌转移中的作用[J].中华肿瘤杂志,2017,39(1):18–23.doi:10.3760/cma.j.issn.0253–3766.2017.01.004.
Cao MQ,Gao JR,Huang JF,et al.Effect of HIF-2α on regulating CDCP1 to promote hepatocellular carcinoma metastasis[J].Chinese Journal of Oncology,2017,39(1):18–23.doi:10.3760/cma.j.issn.0253–3766.2017.01.004.
[34] Wang X,Dong J,Jia L,et al.HIF-2-dependent expression of stem cell factor promotes metastasis in hepatocellular carcinoma[J].Cancer Lett,2017,393:113–124.doi:10.1016/j.canlet.2017.01.032.
[35] Kessenbrock K,Plaks V,Werb Z.Matrix metalloproteinases:regulators of the tumor microenvironment[J].Cell,2010,141(1):52–67.doi:10.1016/j.cell.2010.03.015.
[36] Qin G,Luo M,Chen J,et al.Reciprocal activation between MMP-8 and TGF-β1 stimulates EMT and malignant progression of hepatocellular carcinoma[J].Cancer Lett,2016,374(1):85–95.doi:10.1016/j.canlet.2016.02.001.
[37] García-Irigoyen O,Latasa MU,Carotti S,et al.Matrix metalloproteinase 10 contributes to hepatocarcinogenesis in a novel crosstalk with the stromal derived factor 1/C-X-C chemokine receptor 4 axis[J].Hepatology,2015,62(1):166–178.doi:10.1002/hep.27798.
[38] Wu T,Zhang W,Yang G,et al.HMGB1 overexpression as a prognostic factor for survival in cancer:a meta-analysis and systematic review[J].Oncotarget,2016,7(31):50417–50427.doi:10.18632/oncotarget.10413.
[39] Tohme S,Yazdani HO,Liu Y,et al.Hypoxia mediates mitochondrial biogenesis in hepatocellular carcinoma to promote tumor growth through HMGB1 and TLR9 interaction[J].Hepatology,2017,66(1):182–197.doi:10.1002/hep.29184.
[40] Chen R,Zhu S,Fan XG,et al.High mobility group protein B1 controls liver cancer initiation through yes-associated protein -dependent aerobic glycolysis[J].Hepatology,2018,67(5):1823–1841.doi:10.1002/hep.29663.
[41] Jiang J,Wang GZ,Wang Y,et al.Hypoxia-induced HMGB1 expression of HCC promotes tumor invasiveness and metastasis via regulating macrophage-derived IL-6[J].Exp Cell Res,2018,367(1):81–88.doi:10.1016/j.yexcr.2018.03.025.
[42] Osman NA,Abd El-Rehim DM,Kamal IM.Defective Beclin-1 and elevated hypoxia-inducible factor (HIF)-1α expression are closely linked to tumorigenesis,differentiation,and progression of hepatocellular carcinoma [J].Tumour Biol,2015,36(6):4293–4299.doi:10.1007/s13277–015–3068–0.
[43] Hota KB,Hota SK,Srivastava RB,et al.Neuroglobin regulates hypoxic response of neuronal cells through Hif-1α- and Nrf2-mediated mechanism[J].J Cereb Blood Flow Metab,2012,32(6):1046–1060.doi:10.1038/jcbfm.2012.21.
[44] Liu N,Yu Z,Xiang S,et al.Transcriptional regulation mechanisms of hypoxia-induced neuroglobin gene expression[J].Biochem J,2012,443(1):153–164.doi:10.1042/BJ20111856.
[45] Zhang J,Lan SJ,Liu QR,et al.Neuroglobin,a novel intracellular hexa-coordinated globin,functions as a tumor suppressor in hepatocellular carcinoma via Raf/MAPK/Erk[J].Mol Pharmacol,2013,83(5):1109–1119.doi:10.1124/mol.112.083634.
[46] Zhang J,Pei Y,Yang W,et al.Long S.Cytoglobin ameliorates the stemness of hepatocellular carcinoma via coupling oxidativenitrosative stress signals[J].Mol Carcinog,2019,58(3):334–343.doi:10.1002/mc.22931.
[47] Hu B,Tang WG,Fan J,et al.Differentially expressed miRNAs in hepatocellular carcinoma cells under hypoxic conditions are associated with transcription and phosphorylation[J].Oncol Lett,2018,15(1):467–474.doi:10.3892/ol.2017.7349.
[48] Zhao ZB,Chen F,Bai XF.Long Noncoding RNA MALAT1 Regulates Hepatocellular Carcinoma Growth Under Hypoxia via Sponging MicroRNA-200a [J].Yonsei Med J,2019,60(8):727–734.doi:10.3349/ymj.2019.60.8.727.
[49] Xiao Y,Sun Y,Liu G,et al.Androgen receptor (AR)/miR-520f-3p/SOX9 signaling is involved in altering hepatocellular carcinoma (HCC) cell sensitivity to the Sorafenib therapy under hypoxia via increasing cancer stem cells phenotype[J].Cancer Lett,2019,444:175–187.doi:10.1016/j.canlet.2018.11.004.
[50] Matsuura Y,Wada H,Eguchi H,et al.Exosomal miR-155 Derived from Hepatocellular Carcinoma Cells Under Hypoxia Promotes Angiogenesis in Endothelial Cells[J].Dig Dis Sci,2019,64(3):792–802.doi:10.1007/s10620–018–5380–1.
[51] Xu W,Zhou W,Cheng M,et al.Hypoxia activates Wnt/betacatenin signaling by regulating the expression of BCL9 in human hepatocellular carcinoma[J].Sci Rep,2017,7:40446.doi:10.1038/srep40446.
[52] Liu K,Min XL,Peng J,et al.The Changes of HIF-1α and VEGF Expression After TACE in Patients With Hepatocellular Carcinoma[J].J Clin Med Res,2016,8(4):297–302.doi:10.14740/jocmr2496w.
[53] Dong G,Lin XH,Liu HH,et al.Intermittent hypoxia alleviates increased VEGF and pro-angiogenic potential in liver cancer cells[J].Oncol Lett,2019,18(2):1831–1839.doi:10.3892/ol.2019.10486.
[54] Muto J,Shirabe K,Sugimachi K,et al.Review of angiogenesis in hepatocellular carcinoma[J].Hepatol Res,2015,45(1):1–9.doi:10.1111/hepr.12310.
[55] Ronald J,Nixon AB,Marin D,et al.Pilot Evaluation of Angiogenesis Signaling Factor Response after Transcatheter Arterial Embolization for Hepatocellular Carcinoma[J].Radiology,2017,285(1):311–318.doi:10.1148/radiol.2017162555.
[56] Méndez-Blanco C,Fondevila F,García-Palomo A,et al.Sorafenib resistance in hepatocarcinoma:role of hypoxia-inducible factors[J].Exp Mol Med,2018,50(10):134.doi:10.1038/s12276–018–0159–1.
[57] He K,Wu L,Ding Q,et al.Apatinib Promotes Apoptosis of Pancreatic Cancer Cells through Downregulation of Hypoxia-Inducible Factor-1α and Increased Levels of Reactive Oxygen Species[J].Oxid Med Cell Longev,2019,5152072.doi:10.1155/2019/5152072.
Research progress of mechanism for hypoxia promoting the occurrence and development of hepatocellular carcinoma
Cite this article as:Meng YB,Cheng BB,Du J,et al.Research progress of mechanism for hypoxia promoting the occurrence and development of hepatocellular carcinoma[J].Chin J Gen Surg,2020,29(1):97-103.doi:10.7659/j.issn.1005-6947.2020.01.012