·文献综述·
深静脉血栓形成(deep venous thrombosis,DVT)是血液在深静脉内异常凝结导致的静脉回流障碍性疾病,常发生于下肢。栓子脱落可引起肺动脉栓塞(pulmonary embolism,PE),DVT与PE统称为静脉血栓栓塞症(venous thromboembolism,VTE),是同种疾病在不同阶段的表现形式[1]。全球范围内DVT和PE均有很高发病率,在美国每年约新发60万例VTE患者,发病率约1‰~2‰,其中30%患者表现为突发致死性PE[2-5]。亚洲国家VTE并不少见,以我国为例,随着诊疗水平的提高及居民健康意识的增加,其确诊数逐年上升,张伟等[6]对北京医院的研究分析表明,1962—2009年1650例尸检病例中PE检出率为3.4%。PE突出的高发病率(仅次于心、脑血管疾病)和高病死率(仅次于肿瘤、心肌梗死)[7],已成为导致院内患者非预期死亡的主要疾病。通过VTE的预防和及时诊治可以很大程度减少致死性PE的出现。对住院患者,尤其是行动不便的外科手术患者,一旦明确急性VTE,通常首选抗凝药物治疗,可以避免栓子蔓延,同时促使人体自身纤溶机制消融已产生的血栓[8]。然而当急性VTE患者出现抗凝禁忌或抗凝治疗失败时,置入下腔静脉滤器(inferior vena cava filters,IVCF)物理拦截下肢及盆腔静脉系统的血栓脱落成为预防PE的重要手段[9-11]。
21世纪初IVCF的使用数量迅速增加,IVCF相关的并发症如倾斜、移位、断裂、血栓形成、下腔静脉穿孔等逐渐凸显[12],使得置入IVCF的争议日益增多[13],越来越多的国内外研究团队致力于新型IVCF研制以避免上述不良事件的发生。本研究从IVCF的临床应用现状及新型IVCF研究进展两个方面综合介绍了其发展历史、分型和缺陷,并针对现在研究的新型IVCF存在的问题,提出新的解决构想,展望对人体副作用小、无需二次手术取出的IVCF的开发,早日投入临床使用。
应用外科技术预防血栓脱落的历史可追溯到19 世纪30年代[14],股静脉或下腔静脉缝扎、折叠、夹闭等术式相继提出并使用,但因其明显改变了正常血流动力学特征及术后的高病死率被淘汰。1967年Mobin-Uddin滤器的上市揭开了下腔静脉腔内治疗的序幕,经过半个多世纪的探索,逐渐研发出由不同材料制成的、形状各异的IVCF。目前临床应用的IVCF多由镍钛合金制成,具有伞形,梭形,螺旋形等结构,在放射线或超声指引下经皮穿刺送入下腔静脉预定位置后恢复原始形状,通过网状过滤结构捕获血凝块[15]。根据使用情况,可分为永久型、临时型及可选择回收型IVCF。
永久型IVCF虽有效拦截血栓降低了致死性PE的患病率,但置入人体后除非手术切开腔静脉否则无法取出,患者需终生接受抗凝治疗,同时置入的滤器远期断裂、移位、栓塞、症状性下腔静脉穿孔等出现率也较高[16]。据报道,滤器穿透下腔静脉会导致胰腺炎、脓肿形成、十二指肠出血、主动脉损伤、输尿管损伤和脊柱损伤等[17-20],导致使用永久型IVCF的患者最终病死率没有下降[21]。因此,既可有效拦截血栓、又能在适当时间内取出(研究分析显示在植入后29~54 d内取出获益[22])的可回收型IVCF逐渐成为临床应用的主流,永久型IVCF的治疗时代已经结束。
临时型IVCF通过与外部的导管和固定设备相接,便于回收且对下腔静脉损伤较小,但其连接导管长期留置且与外界相通,增加了感染机会,并且一项对照研究发现其疗效并不优于单纯抗凝治疗[23],临床应用较少。目前美国食品药品监督管理局(Food and Drug Administration,FDA)仅批准了一款临时型IVCF(Angel Catheter)上市使用[24],适用于重症患者的床旁置入,同时可用于输液。
可回收型IVCF添加了用于回收的钩状结构,当患者VTE风险期过后,可通过介入手术取出。但使用时需注意滤器若长期滞留体内,易通过炎性刺激等激发血管内皮过度增生,使得IVCF回收钩或支撑臂嵌入静脉壁,甚至滤器断裂、穿透腔静脉壁[25-27],强行取出时可致血管壁撕裂,引起严重并发症,这时需要使用复杂的技术(例如应用支气管钳、导丝成袢技术、激光辅助去除以及腹腔镜手术)将其收回[17,28-30]。FDA曾于2010年和2014年分别发表声明建议临床医生当患者VTE高危期过后及时取出滤器,以减少此类并发症,虽然此指南发布后滤器的使用量有所下降,但是可回收型IVCF的取出率仍然很低,据报道,美国2012年滤器的取出率为6.9%而2016年上升到22.1%,2021年一项单中心统计结果显示回收率仅上升为31.4%[31-34]。另外,有研究[35-36]表明患者依从性低、不能坚持随访也限制了IVCF的回收率。近年来我国医院每年在临床中使用可回收型IVCF约5万个以上,但国内尚无有关平均回收率的统计结果[37-38]。慈红波等[39]对108例置入IVCF的患者进行了单中心回顾性分析,通过采用抓捕器圈套取出、Loop技术及配合活检钳技术最终取出成功率为93.5%,其中滤器取出失败的主要原因为滤器倾斜导致滤器回收钩贴壁。我国单中心IVCF取出率较高的原因与多种辅助取出技术的应用有关,但其研究局限性为样本量较少,未来需进行多中心的大样本统计分析以得出平均回收率。可回收型IVCF除外目前回收率不高和一定的回收手术并发症缺陷之外,二次手术也增加了患者的经济负担和手术医生的射线曝光量,其发展应用进入瓶颈阶段,无需再次手术取出的IVCF成为研究的目标。
基于心脏介入治疗的启发,研究者们认为使用例如抗平滑肌增生、抗凝、抗炎等药物涂覆的载药下腔静脉滤器(Drug-Eluting IVCF)会像药物洗脱支架一样降低血管局部的炎性应答、阻止血管内膜的过度增生,延长IVCF的留置时间并便于回收,从而推动IVCF的进一步发展。基质金属蛋白酶(MMP)在上述过程中起关键作用,研究[40-41]将MMP抑制剂(MMPI)与聚乳酸-乙醇酸的混合溶液喷涂在可回收IVCF表面,通过IVCF支撑柱与下腔静脉壁接触部位缓慢释放MMPI,抑制MMP活性,从而抑制平滑肌细胞迁移,减少新内膜增生,并在动物模型体内证实其可有效增加管腔面积,预防血栓形成。最新的研究在滤器传统的血栓拦截功能基础上也取得了突破,Faltas等[42]设想使用涂有针对循环肿瘤细胞表面标志物特异性抗体的药物洗脱IVCF将吸引并裂解癌细胞,理论上减少肿瘤细胞通过静脉系统的血源性播散,这一假说赋予了IVCF新的功能,但目前未见进一步的研究报道。
可转换IVCF的设计理念为当VTE高危风险期过后,允许滤器结构在体内发生转换,由过滤网变形为开放式支架,以期降低IVCF远期并发症。Gao等[43]使用医用不锈钢丝设计并制作可转换IVCF主体结构(包括固定臂与过滤丝),并制成可降解L-丙交酯-ε-己内酯聚合物开关以束缚过滤丝构成锥形滤网结构,在犬模型体内研究中无需二次手术干预(共聚物开关降解后,束缚作用消失)即可自我转换为下腔静脉支架,实现75.5%的平均血栓捕获效率。一款2017年获得FDA批准的Sentry过滤器,主体为镍钛合金支架,具有可降解的聚对二氧环烷酮约束装置,可在PE高风险时期提供过滤功能,并在置入60 d后降解约束装置完成形状转换。一项纳入129例DVT或PE患者的多中心研究[44]显示,在长达12个月的随访中,96.4%的患者观察到Sentry过滤器成功转换,且所有病例未出现症状性PE。最新一款已临床应用的VenaTech CIVCF,多中心的回顾性研究[45]表明,在149例患者中置入VenaTech滤器,6个月后64.4%的患者渡过了VTE高风险期并尝试了滤器转化,成功率96.9%,转换组的滤器相关并发症也明显低于非转换组,但其转换需通过介入操作取出过滤器约束帽,并且上述可转换IVCF转换后的金属支架无法取出,对腔静脉的远期影响仍需要长期的随访观察。
生物可降解材料已广泛应用于医用缝线、药物释放体系、组织工程等领域,全吸收式可降解冠脉支架已进入临床研究阶段,被认为开启了冠脉介入治疗的新篇章。生物可降解IVCF可完全被机体吸收,避免了二次手术,成为国内外学者研究的热点。Yang等[46]运用左旋聚乳酸(PLLA)制备了一款沙漏状可降解IVCF,通过导管释放后可利用材料的形状记忆效应实现自我膨胀,并具有足够的径向支撑力,体外降解实验显示滤器可在6个月内保持原始的尺寸和结构,之后逐步降解,但人体内环境相对比较复杂,滤器在体内的降解过程仍需进一步研究。Zhang等[47]利用聚乙醇酸制成锥形过滤部分,聚己内酯为原料构成支架部分,设计了一款可降解IVCF,在超声引导下置入10只犬模型体内,全部实验犬存活6周后切除置入段下腔静脉行大体标本检查发现90%的滤网已完全降解,管壁无明显狭窄,但组织学检查见血管内膜和中膜明显增厚,显示强烈的炎症反应。Eggers等[48-51]采用聚二恶烷酮制备了可完全降解IVCF,在体外模拟循环系统及猪模型中验证了其具备优良的生物相容性和栓子捕获效率,可在至少5周保持足够的抗张强度以预防PE的发生,并且首次前瞻性的对8例VTE高危患者置入了可吸收IVCF,在整个研究进程中未发生PE及IVCF相关不良事件,临床有效率100%。这些说明了可降解IVCF的临床应用潜力,但如何设计材料,保证滤器所拦截的血栓吸收之前IVCF保持应有的强度,从而防止血凝块或降解片段再次栓塞的问题目前没有明确的研究数据证实,拥有可控降解特点的新型IVCF是一个明确的研发目标。
IVCF阻拦血栓的功效依赖于结构设计,其结构也影响下腔静脉血流动力学。通过计算机仿真模拟分析不同结构的过滤单元以及不同支撑杆数目对滤器性能的影响,为结构最优化、血流动力学影响最小化的新型IVCF研究提供了更有效的方法。Feng等[52]使用有限元技术和计算流体力学探究了新型可转换IVCF在血管置入和变形过程中,滤器结构与滤器变形行为、血管壁应力分布和滤器支撑刚度的相互作用机理和影响,研究结果表明在过滤器转化为支架之前,更容易导致血管壁损伤,而转换之后滤器与血管的应力作用以及血流动力学影响均有所减少,并在动物模型体内验证了其模拟过程的准确性。杨彩红等[53]通过对支撑杆数目为8、10、12的IVCF模型进行径向支撑力测试,研究显示其支持力随支撑杆数目的添加而减小,自扩张性能则与之相反。这一研究方法将为新型IVCF的结构优化设计提供更科学的参考与理论依据。
IVCF长期留置体内引发的一系列严重并发症已经受到国内外临床医生的广泛关注,以至于美国胸科医师学会(ACCP)发布的第10版VTE抗栓治疗指南以及中华医学会外科学分会血管外科学组制定的第3版深静脉血栓形成的诊断和治疗指南中均提到不推荐对单纯抗凝治疗的急性DVT或PE患者常规应用IVCF,但指南对IVCF预防和减少PE发生的作用予以了肯定,因此IVCF临床应用的关键在于严格把握其植入适应证。目前指南推荐的绝对适应证为:抗凝治疗有禁忌或有并发症,或在充分抗凝治疗的情况下仍发生PE者;相对适应证为:⑴髂、股静脉或下腔静脉内有漂浮血栓;⑵急性DVT拟行导管接触性溶栓(CDT)、经皮机械性血栓清除术(PMT)或手术取栓等血栓清除术者,具有急性DVT、PE高危因素的行腹部、盆腔或下肢手术的患者。
为减少滤器相关的远期并发症,临床应用首选可回收型IVCF,但因其较低的取出率、需要二次侵入性操作以及增加了患者经济负担等缺陷饱受争议。在倡导推广应用更细致的患者管理和临床随访来提高IVCF取出率的基础上,进一步研发出一款理想的IVCF迫在眉睫,意义重大。综上所述,我们认为新型IVCF应具备以下功能:可有效拦截血凝块,以防止新发或复发PE;在VTE高风险期结束后可远程控制转换或整体同步降解;滤器固定良好,保持良好的径向支撑性能同时不损伤腔静脉壁;具有良好生物相容性;对血流动力学影响较小;可在影像学检查中清晰显影便于随访。相信随着材料学、组织工程领域的深入研究与发展,可早日研制出临床疗效优异、并发症极少的新型IVCF。
[1]中华医学会外科学分会血管外科学组.深静脉血栓形成的诊断和治疗指南(第三版)[J].中国血管外科杂志:电子版,2017,9(4):250-257.doi:10.3969/j.issn.1674-7429.2017.04.003.
Group of Vascular Surgery,Society of Surgery,Chinese Medical Association.Guidelines for diagnosis and treatment of deep venous thrombosis(the third edition)[J].Chinese Journal of Vascular Surgery:Electronic Version,2017,9(4):250-257.doi:10.3969/j.issn.1674-7429.2017.04.003.
[2]Heit JA.Epidemiology of venous thromboembolism[J].Nat Rev Cardiol,2015,12(8):464-474.doi:10.1038/nrcardio.2015.83.
[3]Cushman M,Tsai AW,White RH,et al.Deep vein thrombosis and pulmonary embolism in two cohorts:the longitudinal investigation of thromboembolism etiology[J].Am J Med,2004,117(1):19-25.doi:10.1016/j.amjmed.2004.01.018.
[4]Tagalakis V,Patenaude V,Kahn SR,et al.Incidence of and mortality from venous thromboembolism in a real-world population:the Q-VTE Study Cohort[J].Am J Med,2013,126(9):832.doi:10.1016/j.amjmed.2013.02.024.
[5]Huang W,Goldberg RJ,Anderson FA,et al.Secular trends in occurrence of acute venous thromboembolism:the Worcester VTE study(1985-2009)[J].Am J Med,2014,127(9):829-839.doi:0.1016/j.amjmed.2014.03.041.
[6]张伟,王丁一,崔娣,等.2型糖尿病合并肺栓塞12例尸检分析[J].中国临床医生杂志,2015,43(6):42-44.doi:10.3969/j.issn.2095-8552.2015.06.017.
Zhang W,Wang DY,Cui D,et al.Analysis of 12 case autopsy of type 2 diabetes mellitus with pulmonary embolism[J].Chinese Journal for Clinicians,2015,43(6):42-44.doi:10.3969/j.issn.2095-8552.2015.06.017.
[7]Konstantinides SV,Torbicki A,Agnelli G,et al.2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism[J].Eur Heart J,2014,35(43):3033-3069.doi:10.1093/eurheartj/ehu283.
[8]Kearon C,Akl EA,Ornelas J,et al.Antithrombotic Therapy for VTE Disease:CHEST Guideline and Expert Panel Report[J].Chest,2016,149(2):315-352.doi:10.1016/j.chest.2015.11.026.
[9]Ortel TL,Neumann I,Ageno W,et al.American Society of Hematology 2020 guidelines for management of venous thromboembolism:treatment of deep vein thrombosis and pulmonary embolism[J].Blood Adv,2020,4(19):4693-4738.doi:10.1182/bloodadvances.2020001830.
[10]Caplin DM,Nikolic B,Kalva SP,et al.Quality improvement guidelines for the performance of inferior vena cava filter placement for the prevention of pulmonary embolism[J].J Vasc Interv Radiol,2011,22(11):1499-1506.doi:10.1016/j.jvir.2011.07.012.
[11]Muriel A,Jiménez D,Aujesky D,et al.Survival effects of inferior vena cava filter in patients with acute symptomatic venous thromboembolism and a significant bleeding risk[J].J Am Coll Cardiol,2014,63(16):1675-1683.doi:10.1016/j.jacc.2014.01.058.
[12]Stein PD,Matta F,Hull RD.Increasing use of vena cava filters for prevention of pulmonary embolism[J].Am J Med,2011,124(7):655-661.doi:10.1016/j.amjmed.2011.02.021.
[13]Kaufman JA.Inferior Vena Cava Filters:Current and Future Concepts[J].Interv Cardiol Clin,2018,7(1):129-135.doi:10.1016/j.iccl.2017.08.004.
[14]Marron RM,Rali P,Hountras P,et al.Inferior Vena Cava Filters:Past,Present,and Future[J].Chest,2020,158(6):2579-2589.doi:10.1016/j.chest.2020.08.002.
[15]Bikdeli B,Chatterjee S,Desai NR,et al.Inferior Vena Cava Filters to Prevent Pulmonary Embolism:Systematic Review and Meta-Analysis[J].J Am Coll Cardiol,2017,70(13):1587-1597.doi:10.1016/j.jacc.2017.07.775.
[16]Grewal S,Chamarthy MR,Kalva SP.Complications of inferior vena cava filters[J].Cardiovasc Diagn Ther,2016,6(6):632-641.doi:10.21037/cdt.2016.09.08.
[17]Layfield EM,Stavropoulos SW,Chittams J,et al.Prevalence and Characterization of Interaction of Retrievable Inferior Vena Cava Filters with the Spine in Patients Undergoing Complex Filter Removal[J].J Vasc Interv Radiol,2020,31(12):2073-2080.doi:10.1016/j.jvir.2020.07.006.
[18]Hongo T,Harada R,Fujiwara A,et al.IVC Filter Perforation Through the Duodenum[J].Intern Med,2019,58(10):1529-1530.doi:10.2169/internalmedicine.2228-18.
[19]Capasso K,Awad NA,Alvarez N,et al.Urinary excretion after transcaval renal penetration of a fragmented Bird's Nest filter[J].J Vasc Surg Venous Lymphat Disord,2021,9(1):254-257.doi:10.1016/j.jvsv.2020.03.014.
[20]Desai K,Cook J,Brownie E,et al.Tulip piercing the aorta:a rare case of IVC filter aortic perforation and obstruction[J].J Surg Case Rep,2018,2018(10):rjy280.doi:10.1093/jscr/rjy280.
[21]Liu Y,Lu H,Bai H,et al.Effect of inferior vena cava filters on pulmonary embolism-related mortality and major complications:a systematic review and meta-analysis of randomized controlled trials[J].J Vasc Surg Venous Lymphat Disord,2021,9(3):792-800.doi:10.1016/j.jvsv.2021.02.008.
[22]Morales JP,Li X,Irony TZ,et al.Decision analysis of retrievable inferior vena cava filters in patients without pulmonary embolism[J].J Vasc Surg Venous Lymphat Disord,2013,1(4):376-384.doi:10.1016/j.jvsv.2013.04.005.
[23]陈颖,邓小燕.腔静脉滤器应用现状及生物力学研究进展[J].医用生物力学,2019,34(1):110-114.doi:10.16156/j.1004-7220.2019.01.017.
Chen Y,Deng XY.Application Status and Biomechanical Research Progress of Vena Cava Filter[J].Journal of Medical Biomechanics,2019,34(1):110-114.doi:10.16156/j.1004-7220.2019.01.017.
[24]Tapson VF,Hazelton JP,Myers J,et al.Evaluation of a Device Combining an Inferior Vena Cava Filter and a Central Venous Catheter for Preventing Pulmonary Embolism Among Critically Ill Trauma Patients[J].J Vasc Interv Radiol,2017,28(9):1248-1254.doi:10.1016/j.jvir.2017.05.001.
[25]Wang SL,Siddiqui A,Rosenthal E.Long-term complications of inferior vena cava filters[J].J Vasc Surg Venous Lymphat Disord,2017,5(1):33-41.doi:10.1016/j.jvsv.2016.07.002.
[26]Magee GA,Bartley MG,Plotkin A,et al.Inferior Vena Cava Filter Resulting in Perforation and Massive Retroperitoneal Hematoma Presenting as Acute Onset of Lower Extremity Weakness[J].Ann Vasc Surg,2019,57:48.doi:10.1016/j.avsg.2018.09.002.
[27]Park HO,Choi JY,Jang IS,et al.Perforation of inferior vena cava and duodenum by strut of inferior vena cava filter:A case report[J].Medicine(Baltimore),2019,98(47):e17835.doi:10.1097/MD.0000000000017835.
[28]Quencer KB,Smith TA,Deipolyi A,et al.Procedural complications of inferior vena cava filter retrieval,an illustrated review[J].CVIR Endovasc,2020,3(1):23.doi:10.1186/s42155-020-00113-6.
[29]王海东,刘建龙,朱晓斐,等.腹腔镜下腔静脉滤器取出术安全性与可行性分析[J].中国普通外科杂志,2020,29(12):1468-1474.doi:10.7659/j.issn.1005-6947.2020.12.008.
Wang HD,Liu JL,Zhu XF,et al.Safety and feasibility of laparoscopic retrieval of inferior vena cava filters[J].Chinese Journal of General Surgery,2020,29(12):1468-1474.doi:10.7659/j.issn.1005-6947.2020.12.008.
[30]孙振阳,芮清峰.复杂可回收下腔静脉滤器回收的方法和技巧:附29例分析[J].中国普通外科杂志,2017,26(6):752-757.doi:10.3978/j.issn.1005-6947.2017.06.013.
Sun ZY,Rui QF.Methods and technical skills for complicated filter retrieval of retrievable inferior vena cava filter:an analysis of 29 cases[J].Chinese Journal of General Surgery,2017,26(6):752-757.doi:10.3978/j.issn.1005-6947.2017.06.013.
[31]Ahmed O,Wadhwa V,Patel K,et al.Rising Retrieval Rates of Inferior Vena Cava Filters in the United States:Insights From the 2012 to 2016 Summary Medicare Claims Data[J].J Am Coll Radiol,2018,15(11):1553-1557.doi:10.1016/j.jacr.2018.01.037.
[32]Wadhwa V,Trivedi P S,Chatterjee K,et al.Decreasing Utilization of Inferior Vena Cava Filters in Post-FDA Warning Era:Insights From 2005 to 2014 Nationwide Inpatient Sample[J].J Am Coll Radiol,2017,14(9):1144-1150.doi:10.1016/j.jacr.2017.04.022.
[33]Kuban JD,Lee SR,Yevich S,et al.Changes in inferior vena cava filter placement and retrieval practice patterns from a population health perspective[J].Abdom Radiol(NY),2020,45(11):3907-3914.doi:10.1007/s00261-020-02524-4.
[34]Ionescu F,Anusim N,Ma E,et al.Inferior Vena Cava Filter Retrieval Trends:A Single-Center Experience[J].TH Open,2021,5(1):e73-80.doi:10.1055/s-0040-1722707.
[35]Minocha J,Idakoji I,Riaz A,et al.Improving inferior vena cava filter retrieval rates:impact of a dedicated inferior vena cava filter clinic[J].J Vasc Interv Radiol,2010,21(12):1847-1851.doi:10.1016/j.jvir.2010.09.003.
[36]Salei A,Raborn J,Manapragada PP,et al.Effect of a dedicated inferior vena cava filter retrieval program on retrieval rates and number of patients lost to follow-up[J].Diagn Interv Radiol,2020,26(1):40-44.doi:10.5152/dir.2019.18579.
[37]刘建龙,张蕴鑫.建立下腔静脉滤器应用新理念[J].中国普通外科杂志,2017,26(6):680-685.doi:10.3978/j.issn.1005-6947.2017.06.002.
Liu JL,Zhang YX.Establishing a new concept in application of inferior vena cava filters[J].Chinese Journal of General Surgery,2017,26(6):680-685.doi:10.3978/j.issn.1005-6947.2017.06.002.
[38]张福先.腔静脉滤器的规范性应用与并发症的预防[J].中国普外基础与临床杂志,2020,27(4):396-399.doi:10.7507/1007-9424.202002068.
Zhang FX.Standard application of vena cava filter and prevention of complications[J].Chinese Journal of Bases and Clinics in General Surgery,2020,27(4):396-399.doi:10.7507/1007-9424.202002068.
[39]慈红波,阿力木江·沙吾提,郭军,等.下腔静脉滤器的临床应用分析[J].国际外科学杂志,2019,46(11):749-753.doi:10.3760/cma.j.issn.1673-4203.2019.11.007.
Ci HB,Alimujian·SWT,Guo J,et al.Clinical application analysis of inferior vena cava filter[J].International Journal of Surgery,2019,46(11):749-753.doi:10.3760/cma.j.issn.1673-4203.2019.11.007.
[40]Xiao L,Wang M.MMPI drug-eluting IVC filter decreases adhesion between caval wall and filter[J].Cell Biochem Biophys,2013,65(2):159-161.doi:10.1007/s12013-012-9411-9.
[41]Song JB,Shen J,Fan J,et al.Effects of a Matrix Metalloproteinase Inhibitor-Eluting Stent on In-Stent Restenosis[J].Med Sci Monit,2020,26:e922556.doi:10.12659/MSM.922556.
[42]Faltas B.Targeting hematogenous spread of circulating tumor cells by a chemotactic drug-eluting IVC filter to prevent pulmonary and systemic metastasis[J].Med Hypotheses,2010,74(4):668-669.doi:10.1016/j.mehy.2009.11.008.
[43]Gao X,Zhang J,Chen B,et al.A new self-convertible inferior vena cava filter:experimental in-vitro and in-vivo evaluation[J].J Vasc Interv Radiol,2011,22(6):829-834.doi:10.1016/j.jvir.2011.02.018.
[44]Dake MD,Ansel GM,Johnson MS,et al.The Clinical Rationale for the Sentry Bioconvertible Inferior Vena Cava Filter for the Prevention of Pulmonary Embolism[J].Int J Vasc Med,2019,2019:5795148.doi:10.1155/2019/5795148.
[45]Lin L,Hom KC,Hohenwalter EJ,et al.VenaTech Convertible Vena Cava Filter 6 Months after Conversion Follow-up[J].J Vasc Interv Radiol,2020,31(9):1419-425.doi:10.1016/j.jvir.2020.05.023.
[46]Yang C,Ma F,Gao C,et al.Design and evaluation of a novel biodegradable inferior vena cava filter[J].J Biomater Appl,2019,33(8):1060-1069.doi:10.1177/0885328218824203.
[47]Zhang F,Li H,Liang G,et al.Development and evaluation of a new biodegradable vena cava filter in a canine model[J].Asian J Surg,2017,40(1):12-16.doi:10.1016/j.asjsur.2015.05.002.
[48]Eggers MD,Reitman CA.In vitro analysis of polymer candidates for the development of absorbable vascular filters[J].J Vasc Interv Radiol,2012,23(8):1023-1030.doi:10.1016/j.jvir.2012.05.039.
[49]Eggers MD,McArthur MJ,et al.Figueira TA,Pilot in vivo study of an absorbable polydioxanone vena cava filter[J].J Vasc Surg Venous Lymphat Disord,2015,3(4):409-420.doi:10.1016/j.jvsv.2015.03.004.
[50]Huang SY,Eggers M,McArthur M J,et al.Safety and Efficacy of an Absorbable Filter in the Inferior Vena Cava to Prevent Pulmonary Embolism in Swine[J].Radiology,2017,285(3):820-829.doi:10.1148/radiol.2017161880.
[51]Elizondo G,Eggers M,Falcon M,et al.First-in-Human Study with Eight Patients Using an Absorbable Vena Cava Filter for the Prevention of Pulmonary Embolism[J].J Vasc Interv Radiol,2020,31(11):1817-1824.doi:10.1016/j.jvir.2020.07.021.
[52]Feng H,Qiu H,Liu J,et al.Research on Biomechanics Properties and Hemodynamics Performance of the Convertible Vena Cava Filter[J].J Mech Eng-EN,53(6):187-194.doi:10.3901/JME.2017.06.187.
[53]杨彩红,马凤仓,姜洪焱,等.可降解下腔静脉滤器的生物力学性能及有限元分析[J].有色金属材料与工程,2019,40(1):20-26.doi:10.13258/j.cnki.nmme.2019.01.004.
Yang CH,Ma FC,Jiang HY,et al.Biomechanical property and finite element analysis of degradable inferior vena cava filters[J].Nonferrous Metal Materials and Engineering,2019,40(1):20-26.doi:10.13258/j.cnki.nmme.2019.01.004.
Application and research progress of inferior vena cava filters