摘要
NF-κB的活化在多种恶性肿瘤的发生、发展中起了重要的作用。研究发现,趋化因子受体5(CCR5)、肿瘤坏死因子受体相关因子6(TRAF6)以及PTEN/PI3K通路相关蛋白均在恶性肿瘤中异常表达。因此,本研究探讨以上分子在结直肠癌细胞中的作用及相互关系。
分别用Western blot、CCK-8实验、Transwell法检测结直肠癌HT29和SW480细胞经Maraviroc(CCR5抑制剂)、MG132(TRAF6抑制剂)和NF-BAY(NF-κB抑制剂)处理后,各蛋白表达的变化,以及增殖、迁移、侵袭能力的变化。
在两种结直肠癌细胞中,抑制CCR5蛋白后,PI3K的表达降低,PTEN表达升高(均P<0.05),TRAF6和NF-κB表达无明显变化(均P>0.05);抑制TRAF6蛋白后,PI3K和CCR5表达降低,PTEN表达升高(均P<0.05),NF-κB的表达无明显变化(均P>0.05);抑制NF-κB表达后,CCR5、TRAF6和PI3K表达降低,PTEN表达升高(均P<0.05)。三种抑制剂均可明显降低两种结直肠癌细胞的增殖、迁移和侵袭能力(均P<0.05)。
结直肠癌是全世界最常见的癌症之一,是癌症死亡的主要原
核因子κB(nuclear kappa B,NF-κB)异常激活是肠癌恶性肿瘤中最重要的病因之
近来研
兔抗人NF-κB单克隆抗体、兔抗人TRAF6单克隆抗体、兔抗人CCR5单克隆抗体、兔抗人PI3K单克隆抗体,兔抗人PTEN单克隆抗体以及羊抗兔二抗购自美国Abcam公司。CCK-8试剂盒购自MedChemExpress(cat: No. HY-K0301)公司,Transwell小室和Matrigel胶购自康宁公司。
人结直肠癌细胞系HT29和SW480在DMEM培养基中培养,添加10% FBS,在37 ℃,5% CO2培养箱中培养。分别利用Maraviroc(250 nmol/L)、MG-132(50 μmol/L)、NF-κB抑制剂NF-BAY(90 μmol/L)与HT29细胞孵育0、12、24、48 h,取对应细胞分析相应指标。利用Maraviroc(300 nmol/L)、MG-132(70 μmol/L)、NF-BAY(140 μmol/L)与SW480细胞孵育0、12、24、48 h,取对应细胞分析相应指标。
利用RIPA缓冲液获得全细胞蛋白提取物,EZQ蛋白定量试剂盒(Invitrogen)进行定量分析。使用预制Mini-PROTEAN TGX无染色凝胶(Bio-Rad)通过SDS-PAGE分离蛋白提取物,并使用Trans-Blot Turbo转移系统将蛋白印迹到聚偏二氟乙烯膜(PVDC)上。用含5%牛血清白蛋白或脱脂奶粉的TBS-T封闭膜,然后分别用兔单克隆抗NF-κB(1∶1 000)、TRAF6(1∶1 000)、CCR5(1∶1 000)、PI3K(1∶1 000)、PTEN(1∶1 000)孵育过夜。以兔单克隆抗β-actin(1∶1 000)作为上样对照。联合辣根过氧化物酶结合的羊抗兔IgG与增强化学发光系统、ChemiDoc MP 成像系统显示条带。分析各组细胞中蛋白表达水平。
CCK-8试验(Cell Count Kit-8 SAB biotech)用于细胞增殖检测。按照生产商的方案,将细胞以每孔1.0×1
用CCR5抑制剂(Maraviroc)处理HT29和SW480细胞0、12、24、48 h后,Western blot分别检测各组细胞中CCR5、PTEN、NF-κB、TRAF6和PI3K蛋白的表达变化。结果显示,在Maraviroc处理后,随时间延长,HT29和SW480细胞中CCR5和PI3K蛋白的表达呈逐渐降低趋势,而抑癌蛋白PTEN表达呈升高趋势(部分P<0.05),但NF-κB和TRAF6的表达无明显变化(均P>0.05)(

图1 CCR5抑制剂处理细胞后蛋白表达变化 1)与0 h比较,P<0.05
Figure 1 Changes in protein expressions after treatment of CCR5 inhibitor 1) P<0.05 vs. 0-h value
用TRAF6抑制剂(MG132)处理HT29细胞和SW480细胞0、12、24、48 h后,Western blot分析细胞中CCR5、PTEN、NF-κB、TRAF6和PI3K蛋白表达水平,结果显示,MG132处理后,随时间延长,HT29和SW480细胞中TRAF6、PI3K和CCR5表达基本呈逐渐降低趋势,而PTEN表达呈升高趋势(部分P<0.05),NF-κB表达无明显变化(均P>0.05)(

图2 TRAF6抑制剂处理细胞后蛋白表达变化 1)与0 h比较,P<0.05
Figure 2 Changes in protein expressions after treatment of TRAF6 inhibitor 1) P<0.05 vs. 0-h value
用NF-BAY处理HT29和SW480细胞0、12、24、48 h后,Western bolt分析细胞中CCR5、NF-κB、PTEN、TRAF6和PI3K蛋白的表达,结果显示,NF-BAY处理后,随时间延长,HT29和SW480细胞中CCR5、NF-κB、TRAF6、PI3K蛋白表达基本呈逐渐降低趋势,而PTEN表达呈上调趋势(部分P<0.05)(

图3 NF-κB抑制剂处理细胞后蛋白表达变化 1)与0 h比较,P<0.05
Figure 3 Changes in protein expressions after treatment of NF-κB inhibitor 1) P<0.05 vs. 0-h value
CCK-8分析不同抑制剂处理后,HT29和SW480细胞增长的变化,结果显示,与处理24 h比较,抑制剂处理48 h后HT29和SW480细胞增殖明显抑制(均P<0.05)(

图4 CCK-8分析细胞增殖
Figure 4 Proliferation analysis by CCK-8 assay
利用CCR5抑制剂(Maraviroc)、TRAF6抑制剂(MG132)以及NF-κB抑制剂(NF-BAY)处理HT29和SW480细胞,Transwell小室试验结果显示,与对照组比较,Maraviroc、MG132以及NF-BAY处理后HT29和SW480细胞迁移和侵袭能力均明显降低(均P<0.05)(

图5 Transwell分析细胞迁移和侵袭能力 1)与对照组比较,P<0.05
Figure 5 Determination of cell migration and invasion abilities by Transwell assay 1) P<0.05 vs. control group
结直肠癌是全世界最常见癌症之一,早期诊断识别可尽早手术治疗并改善患者预后,降低结直肠癌病死
本研究结果表明,Maraviroc抑制HT29和SW480细胞中CCR5蛋白后,显著降低PI3K的表达,不影响TRAF6和NF-κB的表达,促进PTEN的表达;利用MG132抑制细胞中TRAF6蛋白后,可显著降低PI3K和CCR5的表达,而不影响NF-κB的表达,促进PTEN表达;抑制NF-κB表达后,可显著降低CCR5、TRAF6和PI3K表达,并促进PTEN表达。抑制该信号通路中CCR5、TRAF6和NF-κB蛋白,可降低癌细胞增殖、迁移和侵袭能力。综上,推测结直肠癌细胞中NF-κB通过调控TRAF6/CCR5/PI3K信号通路,最终调节PTEN的表达在结直肠癌进展中发挥作用。
NF-κB信号通路调控不同的蛋白及下游分子的在免疫、炎症、细胞生长、细胞存活和凋亡过程中发挥重要作用。研
研
Nishikawa
PI3K信号通路在结直肠癌发生和发展中起着重要作用,Muzny
本研究结果表明,抑制NF-κB、TRAF6以及CCR5都会降低结直肠癌细胞中PI3K的表达,并与细胞增殖、迁移和侵袭有关,因此,PI3K通路在结直肠癌进展中发挥关键作用。PTEN是PI3K/Akt通路中的一种抑制剂,PTEN的缺失可激活PI3K而导致长期的肿瘤生长,在20%~40%的转移性结直肠癌患者中发现PTEN表达缺
综上,本研究结果表明,结直肠癌细胞中存在NF-κB异常活化,后者可能通过上调TRAF6与CCR5的表达,抑制抑癌分子PTEN的活性,从而导致促癌分子PI3K及其通路的活性升高。
利益冲突
所有作者均声明不存在利益冲突。
参考文献
Kim Y, Lee J, Oh JH, et al. The association between coffee consumption and risk of colorectal cancer in a Korean population[J]. Nutrients, 2021, 13(8):2753. doi: 10.3390/nu13082753. [百度学术]
Cekaite L, Eide PW, Lind GE, et al. microRNAs as growth regulators, their function and biomarker status in colorectal cancer[J]. Oncotarget, 2016, 7(6):6476-6505. doi: 10.18632/oncotarget.6390. [百度学术]
Patel M, Horgan PG, McMillan DC, et al. NF-κB pathways in the development and progression of colorectal cancer[J]. Transl Res, 2018, 197:43-56. doi: 10.1016/j.trsl.2018.02.002. [百度学术]
Hartley AV, Wang BL, Jiang GL, et al. Regulation of a PRMT5/NF-κB axis by phosphorylation of PRMT5 at serine 15 in colorectal cancer[J]. Int J Mol Sci, 2020, 21(10):E3684. doi: 10.3390/ijms21103684. [百度学术]
Xu HH, Liu TT, Li J, et al. Roburic acid targets TNF to inhibit the NF-κB signaling pathway and suppress human colorectal cancer cell growth[J]. Front Immunol, 2022, 13:853165. doi: 10.3389/fimmu.2022.853165. [百度学术]
Bakshi HA, Quinn GA, Nasef MM, et al. Crocin inhibits angiogenesis and metastasis in colon cancer via TNF-α/NF-kB/VEGF pathways[J]. Cells, 2022, 11(9):1502. doi: 10.3390/cells11091502. [百度学术]
Pervaiz A, Zepp M, Georges R, et al. Antineoplastic effects of targeting CCR5 and its therapeutic potential for colorectal cancer liver metastasis[J]. J Cancer Res Clin Oncol, 2021, 147(1):73-91. doi: 10.1007/s00432-020-9. [百度学术]
Zhu GW, Cheng ZB, Wang Q, et al. TRAF6 regulates the signaling pathway influencing colorectal cancer function through ubiquitination mechanisms[J]. Cancer Sci, 2022, 113(4):1393-1405. doi: 10.1111/cas.15302. [百度学术]
Chen ZH, Wang C, Dong H, et al. Aspirin has a better effect on PIK3CA mutant colorectal cancer cells by PI3K/Akt/Raptor pathway[J]. Mol Med, 2020, 26(1):14. doi: 10.1186/s10020-020-5. [百度学术]
Zheng L, Liang H, Zhang QL, et al. circPTEN1, a circular RNA generated from PTEN, suppresses cancer progression through inhibition of TGF-β/Smad signaling[J]. Mol Cancer, 2022, 21(1):41. doi: 10.1186/s12943-022-y. [百度学术]
Zygulska AL, Pierzchalski P. Novel diagnostic biomarkers in colorectal cancer[J]. Int J Mol Sci, 2022, 23(2):852. doi: 10.3390/ijms23020852. [百度学术]
Testa U, Pelosi E, Castelli G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells[J]. Med Sci, 2018, 6(2):31. doi: 10.3390/medsci6020031. [百度学术]
Singh S, Singh TG. Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: an mechanistic approach[J]. Curr Neuropharmacol, 2020, 18(10):918-935. doi: 10.2174/1570159X18666200207120949. [百度学术]
Wu T, Wang G, Chen W, et al. Co-inhibition of BET proteins and NF-κB as a potential therapy for colorectal cancer through synergistic inhibiting MYC and FOXM1 expressions[J]. Cell Death Dis, 2018. 9(3):315. doi: 10.1038/s41419-018-y. [百度学术]
Xue CL, Gao Y, Li XC, et al. Mesenchymal stem cells derived from adipose accelerate the progression of colon cancer by inducing a MT-CAFs phenotype via TRPC3/NF-κB axis[J]. Stem Cell Res Ther, 2022, 13(1):335. doi: 10.1186/s13287-022-5. [百度学术]
Rong DW, Sun GS, Zheng ZY, et al. MGP promotes CD
Berkovich L, Gerber M, Katzav A, et al. NF-kappa B expression in resected specimen of colonic cancer is higher compared to its expression in inflammatory bowel diseases and polyps[J]. Sci Rep, 2022, 12(1):16645. doi: 10.1038/s41598-022-7. [百度学术]
Ma XQ, Su JD, Zhao SH, et al. CCL3 promotes proliferation of colorectal cancer related with TRAF6/NF-κB molecular pathway[J]. Contrast Media Mol Imaging, 2022, 2022:2387192. doi: 10.1155/2022/2387192. [百度学术]
Wang JJ, Wu XJ, Jiang MY, et al. Mechanism by which TRAF6 participates in the immune regulation of autoimmune diseases and cancer[J]. Biomed Res Int, 2020, 2020:4607197. doi: 10.1155/2020/4607197. [百度学术]
Zhu GW, Cheng ZB, Huang YJ, et al. TRAF6 promotes the progression and growth of colorectal cancer through nuclear shuttle regulation NF-kB/c-Jun signaling pathway[J]. Life Sci, 2019, 235:116831. doi: 10.1016/j.lfs.2019.116831. [百度学术]
Garo LP, Ajay AK, Fujiwara M, et al. microRNA-146a limits tumorigenic inflammation in colorectal cancer[J]. Nat Commun, 2021, 12(1):2419. doi: 10.1038/s41467-021-y. [百度学术]
Li C, Li X. circPTEN suppresses colorectal cancer progression through regulating PTEN/AKT pathway[J]. Mol Ther Nucleic Acids, 2021, 26:1418-1432. doi: 10.1016/j.omtn.2021.05.018. [百度学术]
Wu H, Lu XX, Wang JR, et al. TRAF6 inhibits colorectal cancer metastasis through regulating selective autophagic CTNNB1/β-catenin degradation and is targeted for GSK3B/GSK3β-mediated phosphorylation and degradation[J]. Autophagy, 2019, 15(9):1506-1522. doi: 10.1080/15548627.2019.1586250. [百度学术]
Nishikawa G, Kawada K, Nakagawa J, et al. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression via CCR5[J]. Cell Death Dis, 2019, 10(4):264. doi: 10.1038/s41419-019-2. [百度学术]
Hu Y, Ding J, Wu C, et al. Differential expression and prognostic correlation of immune related factors between right and left side colorectal cancer[J]. Front Oncol, 2022, 12:845765. doi: 10.3389/fonc.2022.845765. [百度学术]
Gu JF, Sun RL, Tang DC, et al. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. suppresses growth and metastasis of colorectal cancer cells by inhibiting M2 macrophage polarization via a Sp1/ZFAS1/miR-153-3p/CCR5 regulatory axis[J]. Cell Biol Toxicol, 2022, 38(4):679-697. doi: 10.1007/s10565-021-w. [百度学术]
Muzny DM, Bainbridge MN, Chang K, et al. Comprehensive molecular characterization of human colon and rectal cancer[J]. Nature, 2012, 487(7407):330-337. doi: 10.1038/nature11252. [百度学术]
Mao Y, Xie H, Shu D, et al. Moxidectin induces autophagy arrest in colorectal cancer[J] Med Oncol, 2022, 39(12):211. doi: 10.1007/s12032-022-5. [百度学术]
Deng ZZ, Wu N, Suo QS, et al. Fucoidan, as an immunostimulator promotes M1 macrophage differentiation and enhances the chemotherapeutic sensitivity of capecitabine in colon cancer[J]. Int J Biol Macromol, 2022, 222:562-572. doi: 10.1016/j.ijbiomac.2022.09.201. [百度学术]
Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer[J]. Signal Transduct Target Ther, 2020, 5:22. doi: 10.1038/s41392-020-z. [百度学术]