网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

分化型甲状腺癌颈部淋巴结转移相关分子的研究进展

  • 赵小慧 1
  • 魏明辉 2
  • 李正江 1
  • 安常明 1
1. 国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院 头颈外科,北京100021; 2. 中国医学科学院北京协和医学院肿瘤医院深圳医院 头颈外科,广东 深圳 518116

中图分类号: R736.1

最近更新:2023-12-14

DOI:10.7659/j.issn.1005-6947.2023.11.019

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

分化型甲状腺癌(DTC)呈惰性进展且预后良好,但其易在早期即出现颈部淋巴结转移(LNM),与术后复发及不良预后密切相关。高分辨率超声、CT扫描、细针穿刺针吸活检是术前判断是否存在颈部LNM及转移范围的常用手段,随着分子生物学技术的发展,DTC预后相关分子机制的研究取得了很大进步,有望为术前精准评估颈部LNM、个体化制定手术方案、减少不必要的淋巴结清扫提供新的无创且准确的评价方式。在此,笔者结合目前临床的研究总结并探讨分子标志物与DTC颈部LNM的关系及其在诊断和预后中的潜在价值。

甲状腺癌是内分泌系统,也是头颈部最常见的恶性肿瘤,据统[

1-2]2020年全球新发甲状腺癌58.6万例,占全球癌症诊断的3%,在女性恶性肿瘤中位列第四位,是近10年发病率增长最快的肿瘤。据美国SEER数据[3]统计,甲状腺乳头状癌(papillary thyroid carcinoma,PTC)占所有甲状腺癌的89.1%;甲状腺滤泡癌(follicular thyroid carcinoma,FTC)和嗜酸细胞癌(oncocytic carcinoma,OCA)占7.9%;甲状腺髓样癌(medullary thyroid carcinoma,MTC)占1.8%;甲状腺未分化癌(anaplastic thyroid carcinoma,ATC)占1.0%;甲状腺岛状癌占0.2%,其中PTC和FTC统称为分化型甲状腺癌(differentiated thyroid carcinoma,DTC)。虽然DTC预后良好,5年生存率由2003年的67.5%提升至2015年的84.3%,部分发达欧美国家可达98%[4-5],但极易早期就出现颈部淋巴结转移(lymph node metastasis,LNM),15%~50%患者初诊时即出现颈部LNM[6],20%~69%可出现侧颈部LNM[7],LNM与较短的无病生存期存在显著关联,这可能会增加颈部复发风险从而影响预[8-9]。由此可见术前精准评估LNM在DTC临床诊治工作中的重要性。

分子标志物检测是近年进展迅速的一种诊断方式,有望成为影像学和病理学鉴别DTC侵袭性疾病特征如LNM的有力辅助手段。本文旨在总结并探讨各分子标志物检测在DTC术前预测颈部LNM中的应用价值,以期指导DTC患者颈部淋巴结清扫范围选择,避免过度手术或手术不足导致的医疗资源浪费或不必要的手术创伤。

1 DTC颈部LNM特点

DTC通常沿颈部淋巴引流途径呈逐站转移,最常发生于靠近甲状腺腺体的中央区淋巴结(Ⅵ区),而后经气管旁淋巴结引流,向上转移至颈静脉链淋巴结(Ⅱ~Ⅳ区)及颈后三角区淋巴结(Ⅴ区),向下转移至上纵隔淋巴结(Ⅶ区),以多区转移为主(占81.4%),仅单区转移较少[

10],部分可出现跳跃性转移,即无中央区(Ⅵ区)转移,出现侧区(Ⅱ~Ⅴ区)转移,发生率约为1.6%~21.8%,年龄>45岁、肿瘤大小<5 mm、肿瘤位于甲状腺锥体叶或腺叶上极都是出现跳跃转移的危险因[11]。对于侧区淋巴结而言,一项囊括了18篇研究的Meta分[12]指出转移率由高至低分别为:Ⅲ区(70.5%)>Ⅳ区(66.3%)>Ⅱ区(53.4%)>Ⅴ区(25.3%)>Ⅰ区(3%)。Li[13]分析发现中央区LNM数量≥3枚以及Ⅱ区LNM是V区LNM的独立危险因素,其中V区LNM以Vb区更多见,Song[14]对46例行治疗性侧颈清扫的PTC患者研究发现并无患者出现Va区的LNM。

2 DTC相关信号转导通路

甲状腺癌发病的分子机制主要与丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)和磷脂酰肌醇-3-激酶/蛋白激酶B(phosphatidylinositol-3-kinase/protein kinase B,PI3K/Akt)信号通路的失调有关,但其确切的进展机制仍未阐明(图1)。PTC常常携带激活MAPK,又称细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)信号通路的遗传学变异,其中RET重排和NTRK1重排、BRAF突变、RAS突变在MAPK激活级联反应中连续发生,但PTC通常只包含上述单一驱动基因改变,仅约9%的PTC同时存在端粒酶逆转录酶基因(telomerase reverse transcriptase,TERT)启动子区突变和BRAF或RAS突变,这种PTC的侵袭性高于仅携带一种驱动基因改变的PTC[

15]。FTC多由PI3K/Akt信号通路转导的基因突变所致,包括PAX8/PPAR-γ-1重排以及HRAS、NRAS和KRAS原癌基因突变等,该通路的主要参与分子包括磷酸酶和张力蛋白同源物缺失(phosphatase and tensin homolog deleted on chromosome ten,PTEN)、PI3K、Akt和哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR),PTEN是对抗Akt激活来抑制PI3K信号的关键负调节因[16],mTOR是PI3K相关激酶蛋白家族的成员,参与识别营养信号和调节细胞生长和增[17]。生长因子和细胞因子等通过相应受体,激活PI3K,或通过激活RAS激活PI3K,进而活化Akt和mTOR。mTOR控制细胞内核糖体合成和mRNA的翻译,参与膜蛋白转运和蛋白质降解,进而调控细胞生长、增殖和代谢。

图1  DTC相关信号转导通路图

Figure1  Signal pathways associated with DTC

3 分子标志物在DTC颈部LNM预测中的作用

3.1 BRAFV600E突变

BRAFV600E是近年来PTC诊断中常检的基因靶点,BRAF基因T1799A突变导致BRAF蛋白中V600E氨基酸由缬氨酸变为谷氨酸,激活BRAF/MEK/MAPK信号通路,促进肿瘤发生、细胞增殖和转移,在PTC中的发生率为29%~69%,与PTC发病机制相关,与良性肿瘤或FTC的发病机制无[

18-19]。在一些研[20-21]指出BRAFV600E突变可以强烈预测LNM,且与PTC包膜外侵犯、较晚的TNM分期、持续性疾病、疾病复发密切相关,但仍有许多研[22-23]表明BRAFV600E突变阳性与PTC侵袭性临床病理特征,尤其是LNM之间并无关联,作为独立分子标志物预测LNM乃至预后的价值需进一步研究。文献数据报道的不一致性可能与研究患者群体的异质性有关,如不同研究中患者年龄、肿瘤大小、地理位置、肿瘤分期、是否与TERT基因突变共存等存在显著差异。Silver[24]将121例PTC患者按肿瘤直径分为两组:直径≤1 cm组和直径1.1~1.5 cm组,即甲状腺微小乳头状癌(papillary thyroid microcarcinoma,PTMC)组和小PTC组,研究发现小PTC组中BRAFV600E突变与LNM呈显著相关(P=0.001 6),而PTMC组中BRAFV600E突变与LNM无关。Zha[25]也得出相似结论,肿瘤直径>1 cm、BRAFV600E突变阳性组LNM发生率是肿瘤直径≤1 cm、BRAFV600E突变阴性组的2.55倍(P=0.036),调整年龄和性别后仍差异显著。这些研究显示尚未有充分证据将BRAFV600E突变纳入PTMC患者危险分层,指导积极检测(acute surveillance,AS)或手术方案的选择。Wang[26]发现亚洲、欧洲和美洲PTC患者中,BRAFV600E突变阳性LNM发生率分别是BRAFV600E突变阴性的1.24、1.27、2.07倍。Zhang[27]发现与白种人和亚洲人亚组相比,非洲亚组的这种关联更为显著(OR=5.96)。因此当PTC患者检测到BRAFV600E突变阳性时,还应考虑地理位置及种族影响,评估其LNM状态。

3.2 RAS突变

约30%的FTC中存在RAS突变,其中NRAS突变较HRAS、KRAS突变更常见,RAS突变属于弱驱动突变,在良性甲状腺肿瘤,如14%~48%的滤泡型腺瘤(follicular adenoma,FA)中也很常见。迄今为止,很少有文献讨论RAS突变与LNM的关联,这可能与FTC较少发生LNM,而多通过血行转移有关。Medici[

28]指出RAS突变阳性的结节无论是FA,还是FTC,均无包括LNM在内的侵袭性临床病理特征,其中5个样本具有长期前瞻性超声随访(平均8.3年),也均未显示LNM迹象,这提示虽然RAS突变阳性会增加结节恶性风险,但也均为低风险癌症表型。Fukahori[29]报道的58例FTC中RAS突变也均与LNM无关(P=0.41)。

3.3 TERT启动子基因突变

TERT启动子区域存在C228T和C250T两个突变热点,TERT C228T和C250T突变在PTC、FTC中的发生率分别为10% vs. 2%、30% vs. 5%[

30]。Bae[31]发现222例DTC患者中TERT启动子突变阳性与LNM(P=0.011)、侧区LNM(P<0.001)有显著相关性,TERT启动子突变主要出现在更具侵袭性的病例中,如存在远处转移、高细胞变体PTC、广泛浸润型FTC等,且TERT启动子突变在BRAFV600E突变阳性的PTC中更为常见,但也有研究发现TERT启动子突变与LNM之间没有显著关联,这可能与研究中大多数患者没有或仅进行了有限的颈部淋巴结清扫术、研究人群异质性、患者数过少等有关。

TERT启动子突变与BRAFV600E或RAS突变共存已被证实会增加DTC侵袭性及不良预后风险,但与LNM的关系尚未产生定论。Xing[

32]在507例PTC患者中同时检测BRAFV600E和TERT C228T突变,观察到两种突变均阴性、仅存在BRAFV600E突变和TERT C228T突变,两种突变共存组LNM发生率分别为20.2%、42.4%、38.5%、63.6%,差异均具有统计学意义(P<0.05),发现PTC患者LNM与BRAFV600E和TERT C228T突变均有显著关联,当两种突变共存时,LNM发生率更高且可显著提示复发与远处转移,在PTC总体和CPTC亚组分析研究中,这些结果均成立,且TERT C228T与BRAF突变也有显著相关性,二者对PTC患者LNM与远期预后的影响具有增量和协同作用。这可能与BRAFV600E激活的MAPK通路通过生成和增强ETS因子与TERT启动因子的相互作用,促进TERT基因的上调有[33-34]。但Ren[35]通过对342例PTC患者进行分子检测发现TERT启动子突变与BRAFV600E共存与中央区LNM、侧区LNM、LNM转移枚数>5、累及或切除淋巴结数均无关。至于TERT启动子突变和RAS突变共存病例也没有表现出LNM迹[29]

3.4 RET和NTRK重排

PTC与3种不同的跨膜酪氨酸激酶基因重排有关:RET、NTRK1和NTRK3,RET重排所得的嵌合基因被称为RET/PTC,NTRK重排所得的嵌合基因被称为TRK,其产生的嵌合蛋白具备非配体依赖性激活的酪氨酸激酶活性。早期的一些研究认为无法发现RET重排与PTC的任何临床病理特征包括LNM存在密切关联,相较之下RET/PTC3通常使PTC具备更有侵袭性的表型,但也与LNM无关,后来Zhou[

36]在50例PTC患者中研究发现,8例存在RET重排,且RET/PTC与LNM显著相关,RET/PTC阳性患者局部扩散率和淋巴结受累率均高于RET/PTC阴性病例,在5例RET/PTC和BRAFV600E突变共存患者中,相关性进一步增强,且RET/PTC阳性组NF-κB、IL-1β、IL-6、TNF-α、TGF-β的表达增加,提示RET/PTC可能增强NF-κB的活性、炎症介质的表达和淋巴结的转移。NTRK1/3重排在成人PTC中罕见,发生率为2.3%~6.7%,有限证据表明其可能与频繁的LNM相关,Chu[37]在11例NTRK重排甲状腺癌患者中研究发现,初诊时所有患者原发病灶均具有多结节生长模式,以广泛的淋巴管浸润和颈部LNM为特征。但由于RET重排、NTRK重排发生阳性率太低、样本量太小,这些结论仍需要更多的证据支持。

3.5 基质金属蛋白酶家族(matrix metalloproteinase,MMP)

MMP中MMP-9是肿瘤发生过程中基底膜降解、包膜外侵犯、侵袭性增强的关键性酶之一,Liu[

38]纳入112例PTC患者,研究发现MMP-9表达显著上调,且存在中央区LNM、侧区LNM或晚期肿瘤LNM(Ⅲ+Ⅳ)的MMP-9表达水平更高。Zhang[39]发现PTC伴与不伴LNM患者MMP-9表达强度差异有统计学意义,MMP-9的强表达(+++)主要见于伴有LNM的PTC(80.95%,17/21)。Li[40]发现MMP-9的mRNA和蛋白表达水平与LNM显著相关,同时TGF-β1、SNAI1和MMP-9蛋白表达之间存在显著相关性,任何两个或全部三个分子的同时表达与LNM的相关性比单独表达强。Bumber[41]发现PTC患者MMP-1和TIMP-1表达水平与LNM相关,在侧区LNM组的表达水平最高,可被视为侧区LNM的预测因素,而MMP-2、MMP-9的表达水平与侧区LNM无关。

3.6 Ki-67

Ki-67增殖指数是细胞增殖的标志物,被认为是甲状腺癌预后分类的可靠标志物。Zhou[

42]报道了108例PTMC中Ki-67与中央区LNM有显著关联(P<0.01),可作为判断临床进展和判断预后的重要指标。Lei[43]研究发现PTC患者中Ki-67指数>3%与中央区淋巴结转移(CLNM)显著相关,当Ki-67指数>5%时,更能提示CLNM和更高的淋巴结受累率。Matsuse[44]和Aydogan[45]却得出了直接相反的结果,即Ki-67与LNM、临床侧区LNM(N1b)、病理证实的LNM(pN1)均无显著相关,只与远处转移有关。文献数据的不一致性可能与各研究中患者群体的Ki-67增值指数范围存在明显差异。Matsuse[44]称Ki-67结合TERT启动子或BRAFV600E突变虽与LNM关联缺乏统计学差异,却在预测PTC复发方面表现出色,复发危险比为6.225~8.8,因此需要更多研究发现Ki-67与其他分子突变组合对LNM的预测价值。

3.7 其他分子标志物

血管内皮生长因子C(VEGF-C)引导肿瘤相关淋巴管生长并促进循淋巴系统传播,Šelemetjev研[

46-47]发现PTC患者中,VEGF-C协同活性MMP-9或survivin蛋白的高水平表达与LNM显著相关(P<0.005),抑癌基因PTEN丢失可诱导成纤维细胞迁移和增殖从而促进FTC进[48],韩国一项研[49]表明无论组织学亚型如何,PTEN丢失都与LNM相关(P=0.007)。半乳糖凝集素3(galectin 3,GAL3)在细胞黏附、肿瘤发生发展过程中起重要作用,研究发现GAL3在PTC原发病灶中高表达与LNM显著相关,在LNM病灶中却低表达,提示LNM病灶中GAL3下调可能是促进肿瘤细胞从原发病灶中释放出来发生LNM的原因。Yu[50]在60例PTC患者中抽取血标本检测GAL3和环状RNA(circular RNAs,circRNA)中的circRNA-UMAD1,研究发现二者可作为协同外周血分子标志物预测PTC患者是否存在LNM,在有LNM的PTC患者外周血中,GAL3和circRNA-UMAD1表达均显著升高,受试者工作特征曲线(receiver operating characteristic,ROC)下面积(the area under the curve ,AUC)为0.87,较单一标志物预测LNM的敏感度、特异度均有所增加。血浆和尿液外泌体蛋白含量丰富,Chen[51]研究发现血浆中两种微小RNA(microRNA,miRNA),miR-6774-3p和miR-6879-5p对PTC患者LNM具有良好的诊断效率,其组合可使诊断预测效能进一步提高。Huang[52]发现尿液中甲状腺球蛋白(U-Ex-Tg)浓度升高与Ⅳ区LNM相关。

DTC总体上来讲是高度可治愈的,但仍有相当一部分患者出现区域LNM,出现侵袭性肿瘤行为和高疾病复发率、病死率。目前,术前评估是否有区域LNM主要通过影像学手段,或对明显肿大的淋巴结进行粗针穿刺病理活检,分子检测无疑提供了一种无创、有可能会更加准确敏感的新思路,虽然临床研究数据目前仍存在矛盾和争议点,但联合应用几种分子标志物预测LNM情况、亚组分析等研究正在开展,以期为临床上DTC淋巴结清扫问题提供解决新思路。

作者贡献声明

赵小慧负责论文撰写、文献整理、文献阅读;安常明、李正江负责研究指导、研究设计与经费支持;魏明辉负责文献整理、经费支持。

利益冲突

所有作者均不存在利益冲突。

参考文献

1

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660. [百度学术] 

2

Chen DW, Lang BHH, McLeod DSA, et al. Thyroid cancer[J]. Lancet, 2023, 401(10387):1531-1544. doi: 10.1016/s0140-6736(23)00020-x. [百度学术] 

3

Baloch ZW, Asa SL, Barletta JA, et al. Overview of the 2022 WHO classification of thyroid neoplasms[J]. Endocr Pathol, 2022, 33(1):27-63. doi: 10.1007/s12022-022-09707-3. [百度学术] 

4

Zeng HM, Chen WQ, Zheng RS, et al. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries[J]. Lancet Glob Health, 2018, 6(5):e555-567. doi: 10.1016/S2214-109X(18)30127-X. [百度学术] 

5

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1):7-30. doi: 10.3322/caac.21332. [百度学术] 

6

Megwalu UC, Moon PK. Thyroid cancer incidence and mortality trends in the United States: 2000-2018[J]. Thyroid, 2022, 32(5):560-570. doi: 10.1089/thy.2021.0662. [百度学术] 

7

Song YT, Xu GH, Wang TX, et al. Lateral neck multilevel fine-needle aspiration cytology and thyroglobulin estimation in papillary thyroid carcinoma[J]. Laryngoscope Investig Otolaryngol, 2021, 6(3):570-575. doi: 10.1002/lio2.570. [百度学术] 

8

Tuttle RM, Alzahrani AS. Risk stratification in differentiated thyroid cancer: from detection to final follow-up[J]. J Clin Endocrinol Metab, 2019, 104(9):4087-4100. doi: 10.1210/jc.2019-00177. [百度学术] 

9

Feng JW, Ye J, Hong LZ, et al. Nomograms for the prediction of lateral lymph node metastasis in papillary thyroid carcinoma: stratification by size[J]. Front Oncol, 2022, 12:944414. doi: 10.3389/fonc.2022.944414. [百度学术] 

10

Gong YP, Yang J, Yan SP, et al. Pattern of and clinicopathologic risk factors for lateral lymph node metastases in papillary thyroid carcinoma patients with lateral cervical lymphadenopathy[J]. Medicine (Baltimore), 2018, 97(36):e12263. doi: 10.1097/MD.0000000000012263. [百度学术] 

11

Attard A, Paladino NC, Lo Monte AI, et al. Skip metastases to lateral cervical lymph nodes in differentiated thyroid cancer: a systematic review[J]. BMC Surg, 2019, 18(Suppl 1):112. doi: 10.1186/s12893-018-0435-y. [百度学术] 

12

Eskander A, Merdad M, Freeman JL, et al. Pattern of spread to the lateral neck in metastatic well-differentiated thyroid cancer: a systematic review and meta-analysis[J]. Thyroid, 2013, 23(5):583-592. doi: 10.1089/thy.2012.0493. [百度学术] 

13

Li GY, Tan HL, Chen P, et al. Predictive factors for level V lymph node metastases in papillary thyroid carcinoma with BRAFV600E mutation and clinicopathological features[J]. Cancer Manag Res, 2020, 12:3371-3378. doi: 10.2147/CMAR.S247914. [百度学术] 

14

Song K, Jin YL, Kim M, et al. Patterns of occult metastasis to level va and vb in clinically lateral node-positive papillary thyroid carcinoma[J]. Ann Surg Oncol, 2022, 29(4):2550-2556. doi: 10.1245/s10434-021-11085-9. [百度学术] 

15

Chen BJ, Shi Y, Xu YN, et al. The predictive value of coexisting BRAFV600E and TERT promoter mutations on poor outcomes and high tumour aggressiveness in papillary thyroid carcinoma: a systematic review and meta-analysis[J]. Clin Endocrinol (Oxf), 2021, 94(5):731-742. doi: 10.1111/cen.14316. [百度学术] 

16

Álvarez-Garcia V, Tawil Y, Wise HM, et al. Mechanisms of PTEN loss in cancer: it's all about diversity[J]. Semin Cancer Biol, 2019, 59:66-79. doi: 10.1016/j.semcancer.2019.02.001. [百度学术] 

17

Wei X, Luo L, Chen J. Roles of mTOR signaling in tissue regeneration[J]. Cells, 2019, 8(9):1075. doi: 10.3390/cells8091075. [百度学术] 

18

Smith RA, Lam AK. BRAF Mutations in Papillary Thyroid Carcinoma: A Genomic Approach Using Probe-Based DNA Capture for Next-Generation Sequencing[A]//Papillary Thyroid Carcinoma[M]. New York: Humana, 2022:161-174. doi: 10.1007/978-1-0716-2505-7_12. [百度学术] 

19

Wei XJ, Wang XD, Xiong J, et al. Risk and prognostic factors for BRAFV600E mutations in papillary thyroid carcinoma[J]. Biomed Res Int, 2022, 2022:9959649. doi: 10.1155/2022/9959649. [百度学术] 

20

Liu CX, Xiao C, Chen JJ, et al. Risk factor analysis for predicting cervical lymph node metastasis in papillary thyroid carcinoma: a study of 966 patients[J]. BMC Cancer, 2019, 19(1):622. doi: 10.1186/s12885-019-5835-6. [百度学术] 

21

Qu HJ, Qu XY, Hu Z, et al. The synergic effect of BRAFV600E mutation and multifocality on central lymph node metastasis in unilateral papillary thyroid carcinoma[J]. Endocr J, 2018, 65(1):113-120. doi: 10.1507/endocrj.EJ17-0110. [百度学术] 

22

Yan C, Huang M, Li X, et al. Relationship between BRAF V600E and clinical features in papillary thyroid carcinoma[J]. Endocr Connect, 2019, 8(7): 988-996. doi: 10.1530/EC-19-0246. [百度学术] 

23

Barreno LRQ, Mello JBH, Barros-Filho MC, et al. Characterization of BRAF mutation in patients older than 45 years with well-differentiated thyroid carcinoma[J]. Braz J Otorhinolaryngol, 2022, 88(4): 523-528. doi: 10.1016/j.bjorl.2020.07.007. [百度学术] 

24

Silver JA, Bogatchenko M, Pusztaszeri M, et al. BRAF V600E mutation is associated with aggressive features in papillary thyroid carcinomas ≤ 1.5 cm[J]. J Otolaryngol Head Neck Surg, 2021, 50(1):63. doi: 10.1186/s40463-021-00543-9. [百度学术] 

25

Zha XJ, Miao ZC, Huang X, et al. The risk stratification of papillary thyroid cancer with Bethesda category Ⅲ (atypia of undetermined significance/follicular lesion of undetermined significance) by thyroid fine-needle aspiration could be assisted by tumor size for precision treatment[J]. Front Endocrinol (Lausanne), 2022, 13:822423. doi: 10.3389/fendo.2022.822423. [百度学术] 

26

Wang Z, Chen JQ, Liu JL, et al. Clinical impact of BRAF mutation on the diagnosis and prognosis of papillary thyroid carcinoma: a systematic review and meta-analysis[J]. Eur J Clin Invest, 2016, 46(2):146-157. doi: 10.1111/eci.12577. [百度学术] 

27

Zhang Q, Liu SZ, Zhang Q, et al. Meta-analyses of association between BRAF(V600E) mutation and clinicopathological features of papillary thyroid carcinoma[J]. Cell Physiol Biochem, 2016, 38(2):763-776. doi: 10.1159/000443032. [百度学术] 

28

Medici M, Kwong N, Angell TE, et al. The variable phenotype and low-risk nature of RAS-positive thyroid nodules[J]. BMC Med, 2015, 13:184. doi: 10.1186/s12916-015-0419-z. [百度学术] 

29

Fukahori M, Yoshida A, Hayashi H, et al. The associations between RAS mutations and clinical characteristics in follicular thyroid tumors: new insights from a single center and a large patient cohort[J]. Thyroid, 2012, 22(7):683-689. doi: 10.1089/thy.2011.0261. [百度学术] 

30

Mao JX, Huang XL, Okla MK, et al. Risk factors for TERT promoter mutations with papillary thyroid carcinoma patients: a meta-analysis and systematic review[J]. Comput Math Methods Med, 2022, 2022:1721526. doi: 10.1155/2022/1721526. [百度学术] 

31

Bae JS, Kim Y, Jeon S, et al. Clinical utility of TERT promoter mutations and ALK rearrangement in thyroid cancer patients with a high prevalence of the BRAF V600E mutation[J]. Diagn Pathol, 2016, 11:21. doi: 10.1186/s13000-016-0458-6. [百度学术] 

32

Xing MZ, Liu RY, Liu XL, et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence[J]. J Clin Oncol, 2014, 32(25):2718-2726. doi: 10.1200/JCO.2014.55.5094. [百度学术] 

33

Moon S, Song YS, Kim YA, et al. Effects of coexistent BRAFV600E and TERT promoter mutations on poor clinical outcomes in papillary thyroid cancer: a meta-analysis[J]. Thyroid, 2017, 27(5):651-660. doi: 10.1089/thy.2016.0350. [百度学术] 

34

McKelvey BA, Zeiger MA, Umbricht CB. Characterization ofTERT andBRAF copy number variation in papillary thyroid carcinoma: an analysis of the cancer genome atlas study[J]. Genes Chromosomes Cancer, 2021, 60(6):403-409. doi: 10.1002/gcc.22928. [百度学术] 

35

Ren HY, Shen YF, Hu DX, et al. Co-existence of BRAFV600E and TERT promoter mutations in papillary thyroid carcinoma is associated with tumor aggressiveness, but not with lymph node metastasis[J]. Cancer Manag Res, 2018, 10:1005-1013. doi: 10.2147/cmar.s159583. [百度学术] 

36

Zhou DH, Li Z, Bai XF. BRAF V600E and RET/PTC promote the activity of nuclear factor-κB, inflammatory mediators, and lymph node metastasis in papillary thyroid carcinoma: a study of 50 patients in Inner Mongolia[J]. Med Sci Monit, 2018, 24:6795-6808. doi: 10.12659/msm.909205. [百度学术] 

37

Chu YH, Dias-Santagata D, Farahani AA, et al. Clinicopathologic and molecular characterization of NTRK-rearranged thyroid carcinoma (NRTC)[J]. Mod Pathol, 2020, 33(11):2186-2197. doi: 10.1038/s41379-020-0574-4. [百度学术] 

38

Liu XK, Su C, Xu J, et al. Immunohistochemical analysis of matrix metalloproteinase-9 predicts papillary thyroid carcinoma prognosis[J]. Oncol Lett, 2019, 17(2):2308-2316. doi: 10.3892/ol.2018.9850. [百度学术] 

39

Zhang Y, Luo YK, Zhang MB, et al. Values of ultrasound features and MMP-9 of papillary thyroid carcinoma in predicting cervical lymph node metastases[J]. Sci Rep, 2017, 7(1):6670. doi: 10.1038/s41598-017-07118-7. [百度学术] 

40

Li Z, Wei J, Chen BW, et al. The role of MMP-9 and MMP-9 inhibition in different types of thyroid carcinoma[J]. Molecules, 2023, 28(9):3705. doi: 10.3390/molecules28093705. [百度学术] 

41

Bumber B, Marjanovic Kavanagh M, Jakovcevic A, et al. Role of matrix metalloproteinases and their inhibitors in the development of cervical metastases in papillary thyroid cancer[J]. Clin Otolaryngol, 2020, 45(1):55-62. doi: 10.1111/coa.13466. [百度学术] 

42

Zhou Y, Jiang HG, Lu N, et al. Expression of ki67 in papillary thyroid microcarcinoma and its clinical significance[J]. Asian Pac J Cancer Prev, 2015, 16(4):1605-1608. doi: 10.7314/apjcp.2015.16.4.1605. [百度学术] 

43

Lei Y, Zhao X, Feng Y, et al. The value of ki-67 labeling index in central lymph node metastasis and survival of papillary thyroid carcinoma: evidence from the clinical and molecular analyses[J]. Cancer Control, 2023, 30:10732748231155701. doi: 10.1177/10732748231155701. [百度学术] 

44

Matsuse M, Yabuta T, Saenko V, et al. TERT promoter mutations and Ki-67 labeling index as a prognostic marker of papillary thyroid carcino.mas: combination of two independent factors[J]. Sci Rep, 2017, 7:41752. doi: 10.1038/srep41752. [百度学术] 

45

Aydoğan BI, Ersöz CC, Sak SD, et al. The association between lymph node metastasis and molecular markers in differentiated thyroid cancer[J]. Acta Endocrinol (Buchar), 2018, 14(1):55-65. doi: 10.4183/aeb.2018.55. [百度学术] 

46

Šelemetjev S, Ðoric I, Paunovic I, et al. Coexpressed high levels of VEGF-C and active MMP-9 are associated with lymphatic spreading and local invasiveness of papillary thyroid carcinoma[J]. Am J Clin Pathol, 2016, 146(5):594-602. doi: 10.1093/ajcp/aqw184. [百度学术] 

47

Selemetjev S, Savin S, Paunovic I, et al. Concomitant high expression of survivin and vascular endothelial growth factor-C is strongly associated with metastatic status of lymph nodes in papillary thyroid carcinoma[J]. J Cancer Res Ther, 2018, 14(Supplement):S114-119. doi: 10.4103/0973-1482.163675. [百度学术] 

48

Razavi SA, Salehipour P, Gholami H, et al. New evidence on tumor suppressor activity of PTEN and KLLN in papillary thyroid carcinoma[J]. Pathol Res Pract, 2021, 225:153586. doi: 10.1016/j.prp.2021.153586. [百度学术] 

49

Min HS, Lee C, Jung KC. Correlation of immunohistochemical markers and BRAF mutation status with histological variants of papillary thyroid carcinoma in the Korean population[J]. J Korean Med Sci, 2013, 28(4):534-541. doi: 10.3346/jkms.2013.28.4.534. [百度学术] 

50

Yu WB, Ma B, Zhao W, et al. The combination of circRNA-UMAD1 and Galectin-3 in peripheral circulation is a co-biomarker for predicting lymph node metastasis of thyroid carcinoma[J]. Am J Transl Res, 2020, 12(9):5399-5415. [百度学术] 

51

Chen WJ, Li GP, Li ZH, et al. Evaluation of plasma exosomal miRNAs as potential diagnostic biomarkers of lymph node metastasis in papillary thyroid carcinoma[J]. Endocrine, 2022, 75(3):846-855. doi: 10.1007/s12020-021-02949-x. [百度学术] 

52

Huang TY, Wang CY, Chen KY, et al. Urinary exosomal thyroglobulin in thyroid cancer patients with post-ablative therapy: a new biomarker in thyroid cancer[J]. Front Endocrinol (Lausanne), 2020, 11:382. doi: 10.3389/fendo.2020.00382. [百度学术]