摘要
大部分胰腺癌患者确诊时已经出现转移,手术治疗的机会少,化疗和放疗的治疗效果较差,目前急需新的治疗手段。脂代谢异常与胰腺癌发生发展的关系密切,脂代谢异常既是胰腺癌发生的危险因素,也能通过抑制胰腺癌细胞凋亡,增强胰腺癌细胞的代谢与增殖、转移等来加速胰腺癌的发展。笔者就脂代谢异常在胰腺癌相关的进展和关注点进行总结和论述,以期为相关研究提供参考。
胰腺癌是威胁我国居民健康的主要高致命性癌症,是恶性度最高的肿瘤之一。2021年统计数据显示,在美国所有恶性肿瘤中,胰腺癌新发病例男性位列第10位,女性第9位,占恶性肿瘤相关病死率的第4位。中国国家癌症中心2021年统计数据显
在癌症发展的不同阶段,脂质代谢都普遍增强,不仅为肿瘤细胞提供了特殊的能量来源,还可以触发特定的信号和表观遗传事件,以及有利于转移的膜成分重塑。此外,肿瘤微环境(tumor microenvironment,TME)也是支持肿瘤与其周围细胞之间进行代谢交流的重要因素,肿瘤细胞可以吸收基质细胞释放的脂质,这反过来又会影响多种免疫细胞的功能。糖脂和磷脂以及胆固醇是生物膜的主要成分。胆固醇也是合成脂溶性维生素和类固醇激素的底物,作为糖脂和磷脂的主要成分,脂肪酸(fatty acid,FA)可以与甘油部分酯化形成甘油三酯,甘油三酯是在高营养素利用率期间合成并储存在脂滴(lipid droplet,LD)中的非极性脂质,并在能量应激条件下通过FA氧化水解产生三磷酸腺苷(adenosine triphosphate,ATP)。除了能量代谢和膜形成之外,脂质形成第二信使,磷脂酶可以产生许多生物活性第二信使,如二酰甘油、磷脂酸、溶血磷脂酸和花生四烯酸。这些分子触发肾素-血管张力素系统(renin-angiotensin system,RAS)、磷酸肌醇3-激酶(phosphoinositide-3 kinases,PI3K)、蛋白激酶C、蛋白激酶B(protein kinase B,PKB;Rac)、Rho激酶(Rho kinase,RHOK)和其他几种可以促进肿瘤发生的信号轴的激活,此外,氧固醇和胆固醇在内的固醇调节元件结合蛋白(sterol regulatory element binding protein,SREBP)是激活下游基因表达的关键调节剂,因此它们的水平会影响癌症中的脂肪生
高脂肪饮食可以在动物模型中改变健康组织的新陈代谢和细胞状态,并更易发生癌症。张宁
胰腺癌中LD急剧增加,LD积累与肿瘤生长和侵袭性相关。研
Ye
血清甘油三酯与多种癌症风险之间存在显著相关
在胰腺癌中,许多从头参与FA和胆固醇合成的酶明显上调,包括柠檬酸合酶(citrate synthase,CS)、ATP柠檬酸裂解酶(ATP-citrate lyase,ACLY)、脂肪酸合酶(fatty acid synthase,FASN)、硬脂酰辅酶A去饱和酶1(stearoyl-CoA desaturase,SCD1)和3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase,HMGCR)。由于FA和胆固醇都是由乙酰辅酶A通过一系列反应合成的,因此乙酰辅酶A水平是脂质产生的关键因素。就乙酰辅酶A而言,它可以通过ACLY从柠檬酸盐中衍生出来,也可以通过乙酰辅酶A合成酶(acetyl-CoA synthase,ACSS)从乙酸盐中衍生出来。ACLY支持胰腺肿瘤发生并促进肿瘤进展。已经发现ACLY是有效的体外KRAS驱动的腺泡-导管化生(acinar-to-ductal metaplasia,ADM)和胰腺肿瘤发生所必需
ACC是FA合成中催化乙酰辅酶A羧化为丙二酰辅酶A的限速酶。在胰腺癌中,较高的血浆甘油三酯水平和ACC1的肿瘤内表达与依维莫司治疗效果不佳相
FASN是FA从头生物合成中的关键脂肪生成酶,它将1个乙酰辅酶a分子和7个丙二酰辅酶a分子缩合成16碳棕榈酸酯,用于合成更复杂的FA。有研
在致癌KRAS小鼠胰腺癌模型中,HMGCR的表达显示升高,并且在胰腺癌中MVA途径基因表达上
SOAT(也称酰基辅酶A胆固醇酰基转移酶)是膜结合O-酰基转移酶家族(membrane-bound O-acyltransferases superfamily,MBOAT)的创始成员,催化酰基从酰基辅酶A转移到胆固醇,在内质网(ER)膜上产生胆固醇酯(CE)。依赖于p53状态的SOAT1表达在胰腺癌进展期间上调。SOAT1缺失损害胰腺癌进展,TP53的杂合性缺失使肿瘤细胞对SOAT1缺陷敏感。有研
CPI-613(devimisat)是一种新型的抑制线粒体代谢的脂酸盐类似物,ACC是调节脂质代谢的关键酶,被认为是CPI-613的重要靶点,它以AMP激活的蛋白激酶(AMP-activated protein kinase,AMPK)依赖的方式失活,并影响CPI-613的凋亡过程。Gao
SREBP转录控制所有调节脂质代谢的酶,从而维持脂质稳态。它主要由螺旋-环-螺旋结构组成,属于亮氨酸拉链转录因子家族。它被翻译为125 kDa的前体蛋白,并保留在与SCAP(SREBP裂解激活蛋白)相关的ER膜中。在哺乳动物中,存在三种SREBP亚型:SREBP1a,SREBP1c和SREBP2,其中SREBP1a在培养的细胞系中含量最高。固醇的细胞内浓度调节SREBP的活性。当甾醇浓度低时,形成与胰岛素诱导的基因蛋白(INSIG,其保持锚定在ER膜中)结合的SREBP-SCAP复合物,并形成SREBP-SCAP-INSIG复合物。然后,SCAP从INSIG解离并经历构象变化(通过暴露的基序与sec23/24蛋白结合),产生COPII相关的囊泡,这有助于SREBP-SCAP复合物转移到高尔基体中,在那里它被切割,N末端转录活性片段进入细胞核。活性蛋白与靶基因启动子区域的固醇调节元件结合,从而激活脂质合成所需的基因。在高固醇水平的情况下,SREBP-SCAP复合物仍然与INSIG结合,抑制SREBP-SCAP复合物与COPII相关囊泡的结合,从而破坏其向高尔基体的转运。此外,SREBP与PI3K/Akt/雷帕霉素复合物1的哺乳动物靶标(mTORC1)和AMPK等途径之间的相互对话决定了脂质代谢的稳态。事实上,SREBP在PI3K/Akt/mTORC1的下游发挥作用,并增强癌症中的细胞增殖,生长和存活。
胆固醇的获得也高度依赖于胰腺癌细胞中增强的细胞外摄取。与胆固醇合成途径适度增加相比,过度活跃的低密度脂蛋白受体(LDL receptor,LDLR)介导的富含胆固醇的脂蛋白摄取在小鼠胰腺癌细胞中占主导地
有多项研究表明胆固醇摄取失调导致胰腺癌变。一项回顾性研
他汀类药物是胆固醇从头合成的抑制剂,在一些临床研究中显示有助于提高胰腺癌患者的生存率,但其潜在机制仍在争论中。肝X受体(LXR),包括LXRα和LXRβ,是在脂质代谢的转录控制中起关键作用的核受体。一项研
胆固醇流出在胰腺癌中的作用越来越明显。一项研
磷酸甘油酸酯以及甾醇和鞘脂是生物膜的主要结构成分。正常脂质代谢中活化的棕榈酸酯和其他饱和脂肪酸(saturated fatty acid,SFA)如硬脂酸盐可以被SCD和FADS去饱和,产生单不饱和脂肪酸(monounsaturated fatty acid,MUFA)。SFA和MUFA都可以通过脂肪酸延长酶(elongase of verylong chain fatty acids,ELOVL)延长。必需的FA(LA和ALA)被ELOVLs拉长,并被FADSs去饱和以产生不同的多不饱和FA(PUFA)。然后将脂肪酰基辅酶a与甘油融合,首先转化为单酰基甘油(monoacylglycerol,MAG),然后通过向二酰甘油(diacyl glycerol,DAG)中添加第二种FA来转化。DAG用于生产膜磷脂或用于储存。二酰甘油酰基转移酶(DGAT)是负责将最后一种FA添加到DAG中并产生三酰甘油(TAG)的酶,然后将其储存在LD中。脂质从LD中释放是通过脂肪酶完成的,脂肪酶通过水解从TAG、DAG和MAG中释放FA。
鞘糖脂根据其电荷分为中性和酸性鞘糖脂(包括神经节苷脂,含葡糖醛酸的葡糖醛酸糖蛋白,硫酸化聚糖磷脂和磷酸鞘糖脂)。神经节苷脂是细胞表面的糖鞘脂,广泛存在于哺乳动物细胞膜中。神经节苷脂有多种类型,其中二唾液酸神经节苷脂GD2和GD3以及O-乙酰化衍生物被认为是肿瘤神经外胚层起源的标志物。Sasaki
胰腺癌细胞中过表达的FASN上调PKM2表达,促进糖酵解和吉西他滨耐药。PKM2还通过抑制吉西他滨诱导的TP53信号传导和随后的细胞凋亡在化学抗性中发挥非代谢作用。除PKM2外,高FASN水平可缓解内质网应激,维持癌干细胞表型并抑制吉西他滨诱导的细胞凋
脂筏也被证明与耐药性和癌症转移有关。Chen
总之,脂代谢异常与胰腺癌发生发展的关系密切,脂代谢异常既是胰腺癌发生的危险因素,也能通过抑制胰腺癌细胞凋亡,增强胰腺癌细胞的代谢与增殖、转移等来加速胰腺癌的发展,值得注意的是,SREBP在PI3K/Akt/mTOR等途径下游促进脂质生物合成和维持脂质稳态中的作用值得注意,这些信号通路中的致癌突变会导致脂质代谢系统发生畸变。相反,失调的脂质代谢通过过量合成脂质信号分子(如DAG、LPA、PIP2和IP3)影响致癌途径,导致GPCR/RTK/PTEN途径过度活化,从而促进癌细胞的存活,增殖和迁移。脂质和TME成分之间的相互作用有助于癌细胞的进展,TME内脂质代谢之间的串扰导致肿瘤发生并赋予癌细胞对常规化疗的抵抗力。目前已针对多种脂代谢异常可能的分子机制进行研究,尚无确切的结论或共识。相关治疗方法的实验结论存在冲突,具体的原因需要进一步探讨。
作者贡献声明
王云峰负责文稿写作;夏俊伟、徐白莹负责收集复习文献。
利益冲突
所有作者均声明不存在利益冲突。
参考文献
中华人民共和国国家卫生健康委员会医政医管局. 胰腺癌诊疗指南(2022年版)[J]. 中华消化外科杂志, 2022, 21(9):1117-1136. doi: 10.3760/cma.j.cn115610-20220726-00431. [百度学术]
Bureau of Medical Administration, National Health Commission of the People's Republic of China. Standard for diagnosis and treatment of pancreatic cancer (2022 edition)[J]. Chinese Journal of Digestive Surgery, 2022, 21(9):1117-1136. doi: 10.3760/cma.j.cn115610-20220726-00431. [百度学术]
Qin C, Yang G, Yang J, et al. Metabolism of pancreatic cancer: paving the way to better anticancer strategies[J]. Mol Cancer, 2020, 19(1):50. doi: 10.1186/s12943-020-01169-7. [百度学术]
Li Y, Zhang J, Xu J, et al. The metabolism symbiosis between pancreatic cancer and tumor microenvironment[J]. Front Oncol, 2021, 11:759376. doi: 10.3389/fonc.2021.759376. [百度学术]
周袁, 张鹏程, 方强强, 等. PIK3C3与SMAD4在胰腺癌中的表达及作用[J]. 中国普通外科杂志, 2021, 30(9):1059-1067. doi: 10.7659/j.issn.1005-6947.2021.09.009. [百度学术]
Zhou Y, Zhang PC, Fang QQ, et al. Expressions and roles of PIK3C3 and SMAD4 in pancreatic adenocarcinoma[J]. China Journal of General Surgery, 2021, 30(9):1059-1067. doi: 10.7659/j.issn.1005-6947.2021.09.009. [百度学术]
张宁, 王颖娴, 胡健, 等. 血清CA 199、C3、C4及脂类代谢水平在胰腺癌临床诊断中的应用[J]. 吉林大学学报:医学版, 2016, 42(2):295-300. doi:10.13481/j.1671-587x.20160220. [百度学术]
Zhang N, Wang YX, Hu J, et al. Application of levels of serum CA199,C3,C4 and lipid metabolism in clinical diagnosis of pancreatic cancer[J]. Journal of Jilin University: Medicine Edition, 2016, 42(2):295-300. doi:10.13481/j.1671-587x.20160220. [百度学术]
谢俊木子. 胰腺癌细胞可溶性分泌物对小鼠脂代谢的影响[D]. 天津: 天津医科大学, 2019. doi: 10.27366/d.cnki.gtyku.2019.000414. [百度学术]
Xie JMZ. Effects of pancreatic cancer cell soluble secretions on lipid metabolism in mice [D]. Tianjin: Tianjin Medical University, 2019. doi: 10.27366/d.cnki.gtyku.2019.000414. [百度学术]
卢英, 丁其勇, 杨璐, 等. 胰腺癌患者血脂水平的变化及其临床意义[J]. 江苏医药, 2022, 48(2):109-112. doi: 10.19460/j.cnki.0253-3685.2022.02.001. [百度学术]
Lu Y, Ding QY, Yang L, et al. Changes and clinical significance of serum lipids in patients with pancreatic cancer[J]. Jiangsu Medical Journal, 2022, 48(2):109-112. doi: 10.19460/j.cnki.0253-3685.2022.02.001. [百度学术]
Wang F, Huang L, Zhang J, et al. Dyslipidemia in Chinese pancreatic cancer patients: a two-center retrospective study[J]. J Cancer, 2021, 12(17):5338-5344. doi: 10.7150/jca.60340. [百度学术]
Han AN, Xu R, Liu Y, et al. HSDL2 acts as a promoter in pancreatic cancer by regulating cell proliferation and lipid metabolism[J]. Oncotargets Ther, 2021, 14:435-444. doi: 10.2147/ott.s287722. [百度学术]
Lu F, Ye M, Hu C, et al. FABP5 regulates lipid metabolism to facilitate pancreatic neuroendocrine neoplasms progression via FASN mediated Wnt/β-catenin pathway[J]. Cancer Sci, 2023, 114(9):3553-3567. doi: 10.1111/cas.15883. [百度学术]
Ye Y, Chen Z, Shen Y, et al. Development and validation of a four-lipid metabolism gene signature for diagnosis of pancreatic cancer[J]. FEBS Open Bio, 2021, 11(11):3153-3170. doi: 10.1002/2211-5463.13074. [百度学术]
Xu H, Sun J, Zhou L, et al. Development of a lipid metabolism-related gene model to predict prognosis in patients with pancreatic cancer[J]. World J Clin Cases, 2021,9(35):10884-10898. doi:10.12998/wjcc.v9.i35.10884. [百度学术]
Li Y, Liang X, Che G, et al. Molecular Classification of Genes Associated with Hypoxic Lipid Metabolism in Pancreatic Cancer[J]. Biomolecules, 2022, 12(10):1533. doi:10.3390/biom12101533. [百度学术]
Ulmer H, Borena W, Rapp K, et al. Serum triglyceride concentrations and cancer risk in a large cohort study in Austria[J]. Br J Cancer, 2009, 101(7):1202-1206. doi: 10.1038/sj.bjc.6605264. [百度学术]
Li Z, He M, Chen G, et al. Effect of total SMS activity on LDL catabolism in mice[J]. Arterioscler Thromb Vasc Biol, 2023, 43(7):1251-1261. doi: 10.1161/ATVBAHA.123.319031. [百度学术]
Grachan JJ, Kery M, Giaccia AJ, et al. Lipid droplet storage promotes murine pancreatic tumor growth[J]. Oncol Rep, 2021, 45(4):21. doi:10.3892/or.2021.7972. [百度学术]
Rozeveld CN, Johnson KM, Zhang LZ, et al. KRAS controls pancreatic cancer cell lipid metabolism and invasive potential through the lipase HSL[J]. Cancer Res, 2020, 80(22):4932-4945. doi: 10.1158/0008-5472.CAN-20-1255. [百度学术]
Liu J, Luo X, Guo R, et al. Cell metabolomics reveals berberine-inhibited pancreatic cancer cell viability and metastasis by regulating citrate metabolism[J]. J Proteome Res, 2020, 19(9):3825-3836. doi: 10.1021/acs.jproteome.0c00394. [百度学术]
Vernieri C, Pusceddu S, Fucà G, et al. Impact of systemic and tumor lipid metabolism on everolimus efficacy in advanced pancreatic neuroendocrine tumors (pNETs)[J]. Int J Cancer, 2019, 144(7):1704-1712. doi: 10.1002/ijc.32042. [百度学术]
Chianese U, Papulino C, Ali A, et al. FASN multi-omic characterization reveals metabolic heterogeneity in pancreatic and prostate adenocarcinoma[J]. J Transl Med, 2023, 21(1):32. doi: 10.1186/s12967-023-03874-5. [百度学术]
Bartolacci C, Andreani C, Vale G, et al. Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer[J]. Nat Commun, 2022, 13(1):4327. doi:10.1038/s41467-022-31963-4. [百度学术]
Zhu H, Wei M, Xu J, et al. PARP inhibitors in pancreatic cancer: molecular mechanisms and clinical applications[J]. Mol Cancer, 2020, 19(1):49. doi:10.1186/ s12943-020-01167-9. [百度学术]
Zhou C, Qian W, Li J, et al. High glucose microenvironment accelerates tumor growth via SREBP1-autophagy axis in pancreatic cancer[J]. J Exp Clin Cancer Res, 2019, 38(1):302. doi: 10.1186/s13046-019-1288-7. [百度学术]
Zhou C, Qian W, Ma J, et al. Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting SREBP1[J]. Cell Prolif, 2019, 52(1):e12514. doi: 10.1111/cpr.12514. [百度学术]
Mouhid L, Gómez de Cedrón M, García-Carrascosa E, et al. Yarrow supercritical extract exerts antitumoral properties by targeting lipid metabolism in pancreatic cancer[J]. PLoS One, 2019, 14(3):e0214294. doi: 10.1371/journal.pone.0214294. [百度学术]
Ye Z, Chen HD, Ji SR, et al. MEN1 promotes ferroptosis by inhibiting mTOR-SCD1 axis in pancreatic neuroendocrine tumors[J]. Acta Biochim Biophys Sin, 2022, 54(11):1599-1609. doi: 10.3724/abbs.2022162. [百度学术]
Zhou L, Wang QY, Zhang H, et al. YAP inhibition by nuciferine via AMPK-mediated downregulation of HMGCR sensitizes pancreatic cancer cells to gemcitabine[J]. Biomolecules, 2019, 9(10):620. doi: 10.3390/biom9100620. [百度学术]
Oni TE, Biffi G, Baker LA, et al. SOAT1 promotes mevalonate pathway dependency in pancreatic cancer[J]. J Exp Med, 2020, 217(9):e20192389. doi: 10.1084/jem.20192389. [百度学术]
Gao L, Xu Z, Huang Z, et al. CPI-613 rewires lipid metabolism to enhance pancreatic cancer apoptosis via the AMPK-ACC signaling[J]. J Exp Clin Cancer Res, 2020, 39(1):73. doi: 10.1186/s13046-020-01579-x. [百度学术]
Gabitova-Cornell L, Surumbayeva A, Peri S, et al. Cholesterol pathway inhibition induces TGF-β signaling to promote basal differentiation in pancreatic cancer[J]. Cancer Cell, 2020, 38(4):567-583.e11. doi: 10.1016/j.ccell.2020.08.015. [百度学术]
Man J, Pajic M, Joshua AM. Fats and Mets, KRAS-Driven Lipid Dysregulation Affects Metastatic Potential in Pancreatic Cancer[J]. Cancer Res, 2020, 15, 80(22):4886-4887. doi: 10.1158/0008-5472.CAN-20-3082. [百度学术]
Srivastava S, Widmann S, Ho C, et al. Novel liver X receptor ligand GAC0001E5 disrupts glutamine metabolism and induces oxidative stress in pancreatic cancer cells[J]. Int J Mol Sci, 2020, 21(24):9622. doi: 10.3390/ijms21249622. [百度学术]
Emanuel A, Krampitz J, Rosenberger F, et al. Nutritional interventions in pancreatic cancer: a systematic review[J]. Cancers (Basel), 2022, 14(9):2212. doi: 10.3390/cancers14092212. [百度学术]
Zhong L, Liu J, Liu S, et al. Correlation between pancreatic cancer and metabolic syndrome: A systematic review and meta-analysis[J]. Front Endocrinol (Lausanne), 2023, 14:1116582. doi: 10.3389/fendo.2023.1116582. [百度学术]
Liu H, Zhao H, Che J, et al. Naringenin Protects against Hypertension by Regulating Lipid Disorder and Oxidative Stress in a Rat Model[J]. Kidney Blood Press Res, 2022, 47(6):423-432. doi:10.1159/000524172. [百度学术]
Deng CF, Zhu N, Zhao TJ, et al. Involvement of LDL and ox-LDL in cancer development and its therapeutical potential[J]. Front Oncol, 2022, 12:803473. doi: 10.3389/fonc.2022.803473. [百度学术]
Maczewsky J, Kaiser J, Krippeit-Drews P, et al. Approved LXR agonists exert unspecific effects on pancreatic β-cell function[J]. Endocrine, 2020, 68(3):526-535. doi:10.1007/s12020-020-02241-4. [百度学术]
Yang B, Zhang B, Cao ZF, et al. The lipogenic LXR-SREBF1 signaling pathway controls cancer cell DNA repair and apoptosis and is a vulnerable point of malignant tumors for cancer therapy[J]. Cell Death Differ, 2020, 27(8):2433-2450. doi: 10.1038/s41418-020-0514-3. [百度学术]
Oberle R, Kührer K, Österreicher T, et al. The HDL particle composition determines its antitumor activity in pancreatic cancer[J]. Life Sci Alliance, 2022, 5(9):e202101317. doi: 10.26508/lsa.202101317. [百度学术]
Lyu J, Fukunaga K, Imachi H, et al. Oxidized LDL downregulates ABCA1 expression via MEK/ERK/LXR pathway in INS-1 cells[J]. Nutrients, 2021, 13(9):3017. doi: 10.3390/nu13093017. [百度学术]
Yang HH, Liu JW, Lee JH, et al. Pancreatic adenocarcinoma therapeutics targeting RTK and TGF beta receptor[J]. Int J Mol Sci, 2021, 22(15):8125. doi: 10.3390/ijms22158125. [百度学术]
Cao S, Saw PE, Shen Q, et al. Reduction-responsive RNAi nanoplatform to reprogram tumor lipid metabolism and repolarize macrophage for combination pancreatic cancer therapy[J]. Biomaterials, 2022, 280:121264. doi: 10.1016/j.biomaterials.2021.121264. [百度学术]
Yu S, Wang L, Che D, et al. Targeting CRABP-Ⅱ overcomes pancreatic cancer drug resistance by reversing lipid raft cholesterol accumulation and AKT survival signaling[J]. J Exp Clin Cancer Res, 2022, 41(1):88. doi: 10.1186/s13046-022-02261-0. [百度学术]
Mouhid L, Gómez de Cedrón M, Vargas T, et al. Identification of antitumoral agents against human pancreatic cancer cells from Asteraceae and Lamiaceae plant extracts[J]. BMC Complement Altern Med, 2018, 18(1):254. doi:10.1186/s12906-018-2322-6. [百度学术]
Sasaki N, Hirabayashi K, Michishita M, et al. Ganglioside GM2, highly expressed in the MIA PaCa-2 pancreatic ductal adenocarcinoma cell line, is correlated with growth, invasion, and advanced stage[J]. Sci Rep, 2019, 9(1):19369. doi: 10.1038/s41598-019-55867-4. [百度学术]
He D, Feng H, Sundberg B, et al. Methionine oxidation activates pyruvate kinase M2 to promote pancreatic cancer metastasis[J]. Mol Cell, 2022, 82(16):3045-3060. doi: 10.1016/j.molcel.2022.06.005. [百度学术]
Steinberg E, Esa R, Schwob O, et al. Methionine aminopeptidase 2 as a potential target in pancreatic ductal adenocarcinoma[J]. Am J Transl Res, 2022, 14(9):6243-6255. [百度学术]
Zhang W, Gong M, Zhang W, et al. Thiostrepton induces ferroptosis in pancreatic cancer cells through STAT3/GPX4 signalling[J]. Cell Death Dis, 2022, 13(7):630. doi: 10.1038/s41419-022-05082-3. [百度学术]
Shao S, Qin T, Qian W, et al. Cav-1 ablation in pancreatic stellate cells promotes pancreatic cancer growth through Nrf2-induced shh signaling[J]. Oxid Med Cell Longev, 2020, 2020:1868764. doi: 10.1155/2020/1868764. [百度学术]
Kunzmann V, Siveke JT, Algül H, et al. Nab-paclitaxel plus gemcitabine versus nab-paclitaxel plus gemcitabine followed by FOLFIRINOX induction chemotherapy in locally advanced pancreatic cancer (NEOLAP-AIO-PAK-0113): a multicentre, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2021, 6(2):128-138. doi: 10.1016/S2468-1253(20)30330-7. [百度学术]
Wang L, Ruan Y, Wu X, et al. lncRNA ZFAS1 promotes HMGCR mRNA stabilization via binding U2AF2 to modulate pancreatic carcinoma lipometabolism[J]. J Immunol Res, 2022, 2022:4163198. doi: 10.1155/2022/4163198. [百度学术]
Flinck M, Hagelund S, Gorbatenko A, et al. The vacuolar H+ ATPase α3 subunit negatively regulates migration and invasion of human pancreatic ductal adenocarcinoma cells[J]. Cells, 2020, 9(2):465. doi: 10.3390/cells9020465. [百度学术]
Chen Q, Tan L, Jin Z, et al. Downregulation of CRABP2 Inhibit the Tumorigenesis of Hepatocellular Carcinoma In Vivo and In Vitro[J]. Biomed Res Int, 2020, 2020:3098327. doi: 10.1155/2020/3098327. [百度学术]
Li B, Qin Y, Yu X, et al. Lipid raft involvement in signal transduction in cancer cell survival, cell death and metastasis[J]. Cell Prolif, 2022, 55(1):e13167. doi: 10.1111/cpr.13167. [百度学术]