网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

三阴性乳腺癌精准治疗研究进展

  • 邵笛
  • 余天剑
  • 邵志敏
复旦大学附属肿瘤医院 乳腺外科/复旦大学上海医学院 肿瘤学系,上海 200032

中图分类号: R737.9

最近更新:2023-12-14

DOI:10.7659/j.issn.1005-6947.2023.11.001

  • 全文
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

随着近年来组学技术的蓬勃发展,基因组、转录组、代谢组、蛋白修饰组、单细胞转录组、空间转录组等技术的广泛应用深化了对于三阴性乳腺癌(TNBC)多维度异质性的解析,而基础研究的深入探索使得靶向其中一些关键信号通路以实施精准治疗成为可能。近期临床研究发现富有前景的治疗新手段,针对肿瘤内在靶点以及微环境特点为早、晚期TNBC患者提供治疗机会。基于TNBC的内在特点以及治疗现状,本文笔者从TNBC内部异质性和治疗方式两方面进行探讨其精准治疗进展。

世界卫生组织国际癌症研究机构的数[

1-2]显示,乳腺癌现已成为全球发病率最高的恶性肿瘤。三阴性乳腺癌(triple-negative breast cancer,TNBC[3]被定义为缺乏雌激素受体(estrogen receptor,ER)、孕激素受体(progesterone receptor,PR)、人表皮生长因子受体2(human epidermal growth factor receptor 2,HER-2)的乳腺癌亚型,占乳腺癌的10%~20%,通常发生在年轻女性中,是最具侵袭性的乳腺癌亚[4-5]

目前化疗仍然是TNBC主要的系统治疗手段,前期其治疗方式的进步大部分也是通过优化化疗药物选择、次序及剂量来实现[

6]。在术前应用细胞毒性药物进行新辅助化疗是TNBC系统治疗的发展方[7]。在药物选择方面,在标准蒽环联合紫杉类化疗的基础上,铂类方案和加用capecitabine的升级策略在一些临床试验中展示出更佳的治疗效果,但其最佳应用方式以及对TNBC患者整体生存的影响仍有待进一步探[8-11]。同时,探索铂类方案的临床试验提示TNBC的获益可能与BRCA1/2突变情况相[12]。虽然TNBC的化疗研究进展优化了其治疗策略,然而仍存在选择性不足、毒性反应等问题。因此,深入挖掘针对TNBC的靶向性策略尤为重要。

精准治疗是指基于可靠的生物标志物,预测靶向治疗对特定患者群体的疗效,从而给予针对性手段的肿瘤治疗策略。由于对TNBC的生物学本质认识不足,其精准治疗策略的开发落后于其他乳腺癌亚[

13]。然而随着近年来组学技术的蓬勃发展以及基础医学研究的深入探索,对TNBC内部异质性的认识提升了临床诊疗中对TNBC患者设计个性化治疗策略的潜力。对TNBC的认识不再停留在其“阴性”表达的经典生物标志物,而是致力于从转录、微环境、代谢等层面发掘能够代表其生物学特性的“阳性”生物标志物。免疫治疗在TNBC治疗中的应用进一步提升了精准治疗的有效性。本文将概述当前TNBC精准治疗的相关进展,希望为后续TNBC精准治疗的研究提供参考。

1 TNBC分子分型

当前,TNBC的异质性受到了广泛的认[

14]。通过分析TNBC内在特征,区分其内部不同的分子分型对TNBC患者的治疗和预后判断具有指导意义,例如当前应用较为广泛的基于转录组的VICC分型和复旦大学上海癌症中心(Fudan University Shanghai Cancer Center,FUSCC)分[5]。同时,随着多组学维度的拓展以及分辨率的增加,代谢组、蛋白修饰组、单细胞转录组、空间转录组等技术的广泛应用使得对于TNBC代谢水平、微环境水平的解析成为可能。基于TNBC微环境以及代谢异质性的分析也加深了对于治疗耐药机制以及相关治疗靶点的认识,进一步推进了TNBC精准治疗的进展。

1.1 转录组异质性

基于表达谱数据的TNBC分型是最早开展也是应用最成熟的精准分型策略。Lehmann团[

15]于2011年就根据587例TNBC患者肿瘤样本的基因表达谱,将TNBC分为6种亚型。2016年,该团队发现免疫调节型(immunomodulatory,IM)和间质干细胞型(mesenchymal stem-like,MSL)的转录物分别来源于微环境中的淋巴细胞与间质细胞,因此将原先的六分型调整为四分[16]

2019年复旦大学附属肿瘤医院乳腺外科团[

5]基于465例亚裔女性TNBC样本的转录组数据,将TNBC分为4个不同的亚型,即雄激素信号活跃的LAR亚型,富含生长因子信号的MES亚型,富集免疫相关信号的IM型以及免疫相对抑制的BLIS亚型。为了将该分型体系应用于临床,研究团队将AR、CD8、FOXC1和DCLK1确定为基于免疫组织化学(immunohistochemistry,IHC)的TNBC分型生物标志[17]

基于FUSCC四分型的“分型而治”策略在FUTURE伞形临床试[

18]中已经得到论证。2023年,FUTURE研[18]最终分析报告了多线治疗失败晚期TNBC患者基于FUSCC分型进行精准治疗的疗效结果。与常规化疗预期总缓解率为5%~10%相比,FUTURE研究的客观缓解率(objective response rate,ORR)达到了29.8%,无进展生存期(progression-free survival,PFS)和总生存期(overall survival,OS)的中位值分别为3.4个月和10.7个月。其中,接受camrelizumab联合白蛋白紫杉醇治疗的IM亚型,其不仅ORR达到43.5%,同时中位PFS达4.6个月,中位OS达16.1个[18]。目前团队正在开展“FUTURE-SUPER”临床试[19],在一线治疗中对转移性TNBC患者使用基于亚型的精准治疗对比标准治疗显著延长了患者的PFS(11.3个月vs. 5.8个月)和ORR(80.0% vs. 44.8%),有望将该精准治疗结果应用于更多患者。

1.2 微环境异质性

TNBC的异质性同样体现在肿瘤微环境(tumor microenvironment,TME)的差异[

20]。TME是肿瘤细胞、免疫细胞、肿瘤相关基质细胞、脉管系统和细胞外成分组成的复杂系[21]。在早期TNBC患者中,肿瘤浸润淋巴细胞(tumor infiltrating lymphocytes,TILs)和免疫相关基因表达特征的预后预测价值已得到充分证[22]。Gruosso[23]于2019年通过免疫细胞数量及其空间分布的整合提出了4种免疫TME亚型,进一步论证肿瘤微环境细胞的组成和空间分布同样是影响肿瘤发生发展的重要因素。

近年来,单细胞转录组测序让人们更深入地了解免疫细胞的复杂生物学。Wu[

24]于2020年从5例TNBC单细胞测序样本中解析到了与细胞毒性T细胞功能障碍和排斥相关的炎症样肿瘤相关成纤维细胞和分化的血管周围样细胞。另一方面,更高的微环境分辨率使得从其中挖掘影响治疗的关键细胞亚群成为可能。例如,Savas[25]通过scRNA-seq表征T细胞异质性并鉴定到了与TNBC免疫治疗反应相关的CD8+CD103+组织驻留记忆T细胞亚群。

这些发现强调了微环境异质性分析所揭示的微环境细胞相互作用对于设计精准治疗策略的重要性。对微环境特征的深入研究或能发掘靶向微环境细胞的精准治疗策略、克服现有治疗耐药性。

1.3 代谢异质性

代谢重编程是癌症的重要标志之[

26]。为了维持持续增殖和转移,肿瘤细胞经历多种代谢适应以应对营养缺乏的微环境。

TNBC中的代谢重编程值得进一步探索。此前的研究利用代谢基因的转录组数据来研究TNBC的代谢特征,根据对脂质代谢和糖酵解的依赖性将其分为3种基于代谢基因的亚[

27]。随着代谢组学测序手段的进展,相关研究将TNBC代谢组与基因组学联系起来进行了全面分析并将TNBC分为富含神经酰胺和脂肪酸的C1、上调与氧化反应和糖基转移相关代谢物的C2以及代谢失调水平最低的C3亚型3个不同的代谢组亚组。代谢组数据集的分析为TNBC确定了一些关键的亚型特异性代谢物作为潜在的治疗靶[28],例如,糖酵解抑制剂和抗PD-1联合治疗可用于治疗糖酵解激活的TNBC,而联合铁死亡诱导剂与抗PD-1疗法是靶向脂质代谢旺盛的亚型的潜在治疗策[28]。后续的研[29]证实在谷胱甘肽代谢(尤其是GPX4)上调的LAR亚型中,GPX4抑制剂和抗PD-1联合用药比单一疗法具有更好的治疗效果。

目前,尽管发现了许多可靶向的肿瘤相关代谢分子,但针对癌症治疗的代谢的临床试验有时证明疗效并不令人满[

30]。通过整合多组学、单细胞和空间检测技术来识别更理想的代谢靶点、了解肿瘤内部代谢异质性,可能是实现靶向代谢临床转化的可靠途径。

2 TNBC相关靶向治疗

2.1 PARP抑制剂

TNBC中部分患者存在BRCA1/2基因突变,使得肿瘤细胞同源重组修复受[

31-32]。PARP是修复DNA单链损伤的关键酶,在BRCA功能缺陷的肿瘤中采用PARP抑制剂能够通过DNA损伤的过度积累导致肿瘤细胞死[33]。目前,PARP抑制剂如olaparib和talazoparib已被美国食品和药物管理局(Food and Drug Administration,FDA)正式批准用于临床治疗具有BRCA突变的HER-2阴性晚期或转移性乳腺癌患[34-35]

OlympiAD临床试验比较了接受olaparib单药治疗或标准治疗HER-2阴性转移性乳腺癌患者疗[

34]。在TNBC患者中,olaparib虽然延长了OS,但差异无统计学意[36]。进一步分析发现,TNBC患者对olaparib治疗的反应与低RAD51评分、高TILs以及高PD-L1表达相关。而OlympiA临床试[37]证实了olaparib在携带BRCA1/2胚系突变的早期HER-2阴性乳腺癌患者辅助治疗中的有效性。EMBRACA临床试[35]则评估了talazoparib在携带 BRCA1/2胚系突变的晚期乳腺癌中的疗效,与化疗组相比,talazoparib提升了患者的ORR以及PFS。此外,NEOTALA试[38]探索了对具有BRCA1/2 胚系突变的HER-2阴性乳腺癌患者在新辅助治疗中单独使用talazoparib显著提升了患者的病理完全缓解率(pathologic complete response,pCR)。

针对PARP抑制剂人群精准度不足以及耐药现象,相关研[

39-40]也正在开发针对DNA损伤修复的治疗提示标志物以及改善耐药的新靶点。例如SWOG1416临床试[39]中,研究者发现在具有BRCA样表型的转移性TNBC患者中使用veliparib联合顺铂治疗提升了患者的PFS,拓宽了PARP抑制剂的适用人群。而针对可能通过其他方式进行DNA损伤修复产生的耐药,目前也正在探索可靶向的其他DNA损伤修复相关蛋白,例如Aurora和血管生成激酶ENMD-2076的小分子抑制剂已在前期研究中取得了不错的结[40]

2.2 PI3K-Akt通路抑制剂

PI3K通路是调控肿瘤生物学行为的重要分子通[

41]。在TCGA乳腺癌数据集中,约有50%的TNBC患者存在PI3K通路相关分子的突变,提示该群患者可能具有对PI3K通路抑制剂治疗敏[42]

一项针对HER-2阴性晚期乳腺癌患者(包含30% TNBC)的临床试[

43]显示,PI3Kα选择性抑制剂alpelisib与白蛋白紫杉醇联用具有较强的抗肿瘤活性(ORR为65%,中位PFS时间为13个月),对于携带PIK3CA激活突变的患者疗效尤其显著。EPIK-B3 Ⅲ期试验目前正在评估该治疗方案对患有PIK3CA激活或PTEN缺失突变的转移性TNBC患者的疗效(NCT04251533)。而针对PI3K通路的下游效应分子Akt1、Akt2和Akt3,LOTUS[44]和P-Akt临床试[45]分别研究了泛Akt抑制剂ipatasertib和capivasertib与紫杉醇联合治疗转移性TNBC的效果,结果显示,PIK3CA、Akt1或PTEN发生改变的患者PFS显著改善。FAIRLANE临床研[46]同样提示,在具有PI3K通路相关突变的患者中ipatasertib联合新辅助化疗提升了pCR率。

当前靶向PI3K通路治疗包含了该通路中具有不同功能效应的多个分子的不同突变情况,但在基础研究层面仍然缺乏对整体分子通路以及不同可靶向分子的不同突变对肿瘤特性的区别影响的认[

47]。后续的研究需要通过对不同患者PI3K通路激活的差异,寻找对于不同患者靶向PI3K通路的个性化优选靶点,例如EAY131-Y试[48]深入评估了capivasertib对存在Akt1 E17K突变的多种转移性肿瘤的治疗效果。

2.3 抗雄激素治疗

雄激素受体(androgen receptor,AR)在大约12%的TNBC中表达,主要包括转录组分型中的LAR亚[

49]。目前已有临床研究评估AR抑制剂用于治疗TNBC的疗效。enzalutamide应用于AR阳性TNBC患者中表现出良好的临床疗效和耐受性,中位PFS和OS分别为3.3和17.6个[50]。评估abiraterone治疗AR阳性晚期TNBC患者的临床试验UCBG 12-1[51]表明,接受abiraterone治疗的患者的中位PFS为7.5个月,ORR为8.22%,临床受益率(clinical benefit rate,CBR)达到20%。

目前AR抑制剂治疗TNBC患者的研究大多为I/Ⅱ期临床试验,缺乏Ⅲ/Ⅳ期大样本数据来进一步探讨AR抑制剂对TNBC患者的有效性。一项正在进行的Ⅲ期临床试[

52](NCT03055312)比较了一线治疗中bicalutamide与化疗的疗效,可以期待其数据能够用以判断AR抑制剂对转移性LAR亚型TNBC患者是否是更优解。AR抑制剂与其他药物联用是否会带来更好的临床效果也是未来的研究方向。TBCRC032[53]是一项关于enzalutamide联合PIK3CA抑制剂taselisibin治疗转移性AR+TNBC患者的临床研究,结果表明,联合治疗有效提高了TNBC患者的CBR(35.7%),中位PFS为3.4个月。此外,包括AR抑制剂联合CDK4/6抑制剂在内的联用策略在临床前数据已显示出抗肿瘤作[54]。相关临床试验也已评估palbociclib与bicalutamide联合治疗AR阳性患者转移性的有效性,达到了6个月的PFS大于33%的目标,后续的研究数据仍待公布。

2.4 周期蛋白依赖性激酶抑制剂

周期蛋白依赖性激酶(cyclin-dependent kinase,CDK)是调节细胞周期各阶段转变的关键酶,持续激活可导致肿瘤细胞增殖。CDK分为2个主要亚类,包括直接调节细胞周期各阶段的细胞周期相关CDK(CDK1、CDK2、CDK4和CDK6)和转录相关CDK(CDK7、CDK8、CDK9、CDK12和CDK13)。

CDK4/6抑制剂主要抑制G1-S期,从而抑制细胞DNA复制过程,是应用最广泛的CDK抑制剂。在ER阳性乳腺癌中,CDK4/6抑制剂已被证实能够显著改善DFS和OS,尤其是与内分泌治疗结合。MONARCH研究、MONALEESA研究、PALOMA研究等都证实了在ER阳性乳腺癌中CDK4/6抑制剂与内分泌治疗联合使用的疗[

55-58]。在TNBC的转录组分型中,LAR亚型细胞周期相关通路呈现高度激活的状态,提示其对CDK4/6抑制剂高度敏感。目前多项临床前试验也表明CDK4/6与其他靶向药物联合在TNBC细胞中发挥良好的抗肿瘤作[59],但在TNBC中应用CDK4/6抑制剂的临床试验数据较少。目前一项针对转移性Rb阳性TNBC患者接受abemaciclib单药治疗的研[60]正在进行中(NCT03130439),可以期待后续结果指导CDK4/6抑制剂在TNBC中的应用。

当前,针对多种CDK的选择性抑制剂的开发和探索也正在进行中。CDK7被称为CDK激活激酶,具有细胞周期控制和转录调控的双重功能,是癌症治疗的潜在靶[

61]。CDK7抑制剂在临床前试验中已显示出有希望的体内抗癌活性,例如选择性CDK7抑制剂SY-5609联合氟维司群显示出对卵巢癌、TNBC和ER阳性乳腺癌具有显著的抗肿瘤活[62-63]。SY-5609于2020年1月进入I期临床试验,用于治疗包括乳腺癌在内的晚期实体瘤(NCT04247126)。

3 免疫治疗

与其他类型的乳腺癌相比,TNBC肿瘤突变负荷更高、PD-L1表达水平更高、免疫细胞浸润水平更高,表明抑制PD-1与PD-L1的结合可能是治疗TNBC的一种有前景的方[

64]。尽管免疫检查点抑制剂(immune checkpoint inhibitors,ICIs)单药治疗效果有限,ICIs联合疗法已使得TNBC患者从中获益。后续研究也发现了有前途的免疫治疗新手段,例如肿瘤疫苗以及细胞疗法等,希望为TNBC患者提供具有针对性的免疫治疗新方法。

3.1 ICIs

目前,ICIs包括PD-1和PD-L1抑制剂,以及正在研发中的如LAG3、TIM3与ICOS的靶向药[

65]。其中,PD-1/PD-L1抑制剂已广泛应用于临床,但其单药治疗在TNBC中的效果有限。虽然KEYNOTE-012[66]和KEYNOTE-086[67]中证明在转移性TNBC中使用pembrolizumab单药治疗具有抗肿瘤活性和安全性,但在KEYNOTE-119试[68]中,与化疗相比,pembrolizumab单药治疗并没有延长经治转移性TNBC 患者的OS,但pembrolizumab单药治疗疗效随着样本中PD-L1表达的增加而增加,这表明高PD-L1表达可能与PD-1/PD-L1抑制剂单药治疗疗效相[68]

当前研究致力于探索增加PD-1/PD-L1抑制剂疗效的联合治疗策略。根据IMpassion130[

69]和KEYNOTE-355试[70]结果,化疗联合ICIs治疗对比单纯化疗提高了晚期TNBC患者的ORR同时降低了疾病进展风险。PD-1/PD-L1抑制剂联合新辅助化疗治疗早期TNBC同样展现了良好的效果。KEYNOTE-173[71]、I-SPY2[72]和KEYNOTE-522[73]都证实了在TNBC新辅助化疗中加入pembrolizumab能够产生更好的抗肿瘤活性。另外,在IMpassion031试[74]中将化疗联合atezolizumab与安慰剂进行比较,atezolizumab组的pCR高于安慰剂组(分别为58%和41%),且不依赖于PD-L1的表达。

除了化疗,相关临床研究也正致力于开发ICIs联合其他药物用于治疗TNBC,以扩大ICIs治疗的受益群体。候选药物包括目前已有明确的肿瘤治疗疗效的PARP抑制剂或抗体偶联(antibody-drug conjugate,ADC)药[

72, 75-78]

3.2 其他免疫治疗策略

嵌合抗原受体T细胞(chimeric antigen receptor T cells,CAR-T)疗法利用基因工程来修饰患者的外周T细胞,赋予它们靶向和识别肿瘤细胞的特[

79]。已知CAR-T疗法对血液肿瘤有效,但其对实体瘤的疗效仍在探索[80]。针对ROR1和MUC1的CAR-T疗法是TNBC有希望的治疗靶点。靶向ROR1的CAR-T在TNBC体内模型中表现出良好的抗肿瘤活性,并具有良好的安全性,相关临床试验正在进行[81]。此外,靶向EGFR的CAR-T在TNBC中也显示出潜在的抗肿瘤作[82]

肿瘤疫苗是一种新兴的免疫治疗策略,其作用是将肿瘤抗原引入患者体内,激活人体的免疫系统,并产生有效的抗肿瘤免疫反应,杀死肿瘤细[

83]。Adagloxad Simolenin是一种活性抗癌免疫原,其目标是Globo-H抗[84]。Globo-H抗原在包括TNBC在内的各种癌症表面高度表达,可以作为识别癌细胞并消除恶性肿瘤的靶[84]。一项正在进行的国际多中心Ⅲ期研究 (NCT03562637[85]正在评估抗Globo-H疫苗在高危早期Globo H阳性TNBC中的作用。α-乳清蛋白同样被认为是开发治疗和预防TNBC疫苗的潜在目标。在针对小鼠模型的一项研[86]中,α-乳清蛋白工程疫苗可增强乳腺癌的抗肿瘤免疫力,从而预防乳腺癌复发。一项I期临床试验(NCT04674306)正在确定α-乳清蛋白疫苗治疗高复发风险TNBC患者的安全性和最佳剂量。

4 ADC

ADC主要利用抗体作为载体,旨在将靶向治疗的选择性与化疗的细胞毒性结合起来,将细胞毒性药物递送到肿瘤细胞内,导致肿瘤细胞死[

87]。ADC药物由三个主要元素组成:抗体载体、细胞毒性药物和合成接头。目前针对TNBC的主要包括靶向滋养层细胞表面抗原2(trophoblast cell-surface antigen 2,Trop-2)以及在HER-2低表达肿瘤中靶向HER-2的ADC药物。

4.1 Trop-2

Trop-2是一种跨膜糖蛋白,由TACSTD2基因编码,在TNBC上高表达。Trop-2过度表达通常预示着更具侵袭性和更差的预[

88]。sacituzumab govitecan(SG)是一种抗体偶联药物,靶向Trop-2抗体通过专有的可水解连接子与SN-38(拓扑异构酶I抑制剂,irinotecan的代谢活性产物)偶联。ASCENT试[89]证实,与化疗相比,SG显著改善多线治疗后的转移性TNBC患者的ORR(35% vs. 5%)、PFS(5.6个月vs. 1.7个月)和OS(12.1个月vs. 6.7个月)。此外,对化疗无反应的转移性TNBC患者在SG治疗后同样体现出PFS和OS的显著改[89]。ASCENT研究的成功使SG成为全球首个批准用于转移性TNBC的靶向Trop-2的ADC药物。除此之外,BEGONIA临床试[90]也探索了Trop-2靶向ADC药物Dato-DXd联合免疫治疗的疗效,结果提示无论PD-L1表达如何,Dato-DXd联合抗PD-L1治疗都在晚期TNBC患者一线治疗中显示出稳健、持久的抗肿瘤反应(ORR:79%;95% CI=66.8~88.3)。同时,几项探索SG作为TNBC新辅助治疗方案疗效的临床研究也正在进行中,其中,NeoSTAR研[91]是首个在TNBC新辅助治疗中探索SG治疗疗效的研究,初步证实了进行4个周期的SG治疗后接受手术的TNBC患者中pCR率为30%(NCT04230109)。该临床试验的后续结果有望能够扩展该具有前景的ADC药物的适用范围。

4.2 HER-2靶向ADC

据报道,HER-2低表达[即IHC(1+)或IHC(2+)/FISH(-)]的患者约占TNBC的38%,且具有独特的临床特征。尽管既往研究表明,由trastuzumab和DM1组成ADC药物T-DM1在HER-2低表达乳腺癌患者中的活性有限,但新型ADC在 HER-2低表达患者中表现出令人鼓舞的抗肿瘤活性。DS-8201a(T-DXd)是一种HER-2靶向ADC,由抗HER-2抗体和拓扑异构酶I抑制剂DX-8951(DXd)的衍生物组成。临床试[

92-93]表明DS-8201a在HER-2阳性转移性乳腺癌患者中表现出可靠的肿瘤抑制活性,并被批准用于治疗转移性HER-2阳性乳腺癌。有趣的是,DS-8201a在HER-2低表达肿瘤中也表现出抗肿瘤活[94]。DESTINY-Breast 04试[95]表明在晚期HER-2低表达乳腺癌患者中,与化疗相比,DS-8201a延长了患者的PFS和OS,而针对激素受体阴性患者的亚组分析也证实了其在TNBC患者中的有效性。目前正在进行的DESTINY-Breast08临床试验(NCT04556773)旨在评估DS8201联合方案治疗HER-2低表达转移性乳腺癌的患者的安全性,耐受性和药代动力学,针对TNBC的实验组包括DS-8201a联合卡培他滨、durvalumab与紫杉醇、Akt抑制剂等,希望为后续TNBC的精准治疗带来新的启示。

5 结 语

对TNBC生物学特性的了解有助于识别其内部不同的患者群体,从而推动多种靶向疗法的开发。尽管现有研究已经探讨了TNBC部分内在特征,了解了其分子特征和微环境结构,但其异质性所提示的治疗意义仍然值得进一步探索。新的药物治疗选择(如PARP抑制剂、ADC药物、ICIs)也将重新定义TNBC的治疗策略。未来,我们期望通过整合现有的多组学数据,开发新的靶点,以达到个体化精准治疗的目标。

作者贡献声明

邵笛负责进行材料收集、撰写文稿;余天剑负责对本文进行修改并补充了部分资料;邵志敏负责构思本文总体框架并对文稿撰写进行指导。

利益冲突

所有作者均声明不存在利益冲突。

参考文献

1

Siegel R, Miller K, Wagle NS, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73:17-48. doi: 10.3322/caac.21763. [百度学术] 

2

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660. [百度学术] 

3

Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013[J]. Ann Oncol, 2013, 24(9):2206-2223. doi: 10.1093/annonc/mdt303. [百度学术] 

4

Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: clinical features and patterns of recurrence[J]. Clin Cancer Res, 2007, 13(15 Pt 1):4429-4434. doi: 10.1158/1078-0432.CCR-06-3045. [百度学术] 

5

Jiang YZ, Ma D, Suo C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies[J]. Cancer Cell, 2019, 35(3):428-440. doi: 10.1016/j.ccell.2019.02.001. [百度学术] 

6

Leon-Ferre RA, Goetz MP. Advances in systemic therapies for triple negative breast cancer[J]. BMJ, 2023:e071674. doi: 10.1136/bmj-2022-071674. [百度学术] 

7

Korde LA, Somerfield MR, Carey LA, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline[J]. J Clin Oncol, 2021, 39(13):1485-1505. doi: 10.1200/JCO.20.03399. [百度学术] 

8

Poggio F, Bruzzone M, Ceppi M, et al. Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: a systematic review and meta-analysis[J]. Ann Oncol, 2018, 29(7):1497-1508. doi: 10.1093/annonc/mdy127. [百度学术] 

9

Geyer CE, Sikov WM, Huober J, et al. Long-term efficacy and safety of addition of carboplatin with or without veliparib to standard neoadjuvant chemotherapy in triple-negative breast cancer: 4-year follow-up data from BrighTNess, a randomized phase Ⅲ trial[J]. Ann Oncol, 2022, 33(4):384-394. doi: 10.1016/j.annonc.2022.01.009. [百度学术] 

10

Lluch A, Barrios CH, Torrecillas L, et al. Phase Ⅲ trial of adjuvant capecitabine after standard neo-/ adjuvant chemotherapy in patients with early triple-negative breast cancer (GEICAM/2003-11_CIBOMA/2004-01)[J]. J Clin Oncol, 2020, 38(3):203-213. doi: 10.1200/JCO.19.00904. [百度学术] 

11

Wang X, Wang SS, Huang H, et al. Effect of capecitabine maintenance therapy using lower dosage and higher frequency vs observation on disease-free survival among patients with early-stage triple-negative breast cancer who had received standard treatment: the SYSUCC-001 randomized clinical trial[J]. JAMA, 2021, 325(1):50-58. doi: 10.1001/jama.2020.23370. [百度学术] 

12

Isakoff SJ, Mayer EL, He L, et al. TBCRC009: a multicenter phase Ⅱ clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer[J]. J Clin Oncol, 2015, 33(17):1902-1909. doi: 10.1200/JCO.2014.57.6660. [百度学术] 

13

Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours[J]. Nature, 2000, 406(6797):747-752. doi: 10.1038/35021093. [百度学术] 

14

Guo L, Kong D, Liu J, et al. Breast cancer heterogeneity and its implication in personalized precision therapy[J]. Exp Hematol Oncol, 2023, 12(1):3. doi: 10.1186/s40164-022-00363-1. [百度学术] 

15

Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies[J]. J Clin Invest, 2011, 121(7):2750-2767. doi: 10.1172/JCI45014. [百度学术] 

16

Lehmann BD, Jovanović B, Chen X, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection[J]. PLoS One, 2016, 11(6):e0157368. doi: 10.1371/journal.pone.0157368. [百度学术] 

17

Zhao S, Ma D, Xiao Y, et al. Molecular subtyping of triple-negative breast cancers by immunohistochemistry: molecular basis and clinical relevance[J]. Oncologist, 2020, 25(10):e1481-1491. doi: 10.1634/theoncologist.2019-0982. [百度学术] 

18

Liu Y, Zhu XZ, Xiao Y, et al. Subtyping-based platform guides precision medicine for heavily pretreated metastatic triple-negative breast cancer: the FUTURE phase Ⅱ umbrella clinical trial[J]. Cell Res, 2023, 33(5):389-402. doi: 10.1038/s41422-023-00795-2. [百度学术] 

19

Zhimin S, Fan L, Linxiaoxi M, et al. FUTURE-SUPER: A randomized, subtyping-based umbrella phase Ⅱ trial for first-line treatment of metastatic triple-negative breast cancer[J]. J Clin Oncol, 2023, 41(16_suppl):3011. doi: 10.1200/JCO.2023.41.16_suppl.3011. [百度学术] 

20

Bareche Y, Buisseret L, Gruosso T, et al. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: towards an optimized treatment approach[J]. J Natl Cancer Inst, 2020, 112(7):708-719. doi: 10.1093/jnci/djz208. [百度学术] 

21

Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor microenvironment complexity and therapeutic implications at a glance[J]. Cell Commun Signal, 2020, 18(1):59. doi: 10.1186/s12964-020-0530-4. [百度学术] 

22

Bianchini G, Balko JM, Mayer IA, et al. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease[J]. Nat Rev Clin Oncol, 2016, 13(11):674-690. doi: 10.1038/nrclinonc.2016.66. [百度学术] 

23

Gruosso T, Gigoux M, Manem VSK, et al. Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers[J]. J Clin Invest, 2019, 129(4):1785-1800. doi: 10.1172/JCI96313. [百度学术] 

24

Wu SZ, Roden DL, Wang CF, et al. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer[J]. EMBO J, 2020, 39(19):e104063. doi: 10.15252/embj.2019104063. [百度学术] 

25

Savas P, Virassamy B, Ye CZ, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis[J]. Nat Med, 2018, 24(7):986-993. doi: 10.1038/s41591-018-0078-7. [百度学术] 

26

Hanahan D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1):31-46. doi: 10.1158/2159-8290.CD-21-1059. [百度学术] 

27

Gong Y, Ji P, Yang YS, et al. Metabolic-pathway-based subtyping of triple-negative breast cancer reveals potential therapeutic targets[J]. Cell Metab, 2021, 33(1):51-64. doi: 10.1016/j.cmet.2020.10.012. [百度学术] 

28

Xiao Y, Ma D, Yang YS, et al. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer[J]. Cell Res, 2022, 32(5):477-490. doi: 10.1038/s41422-022-00614-0. [百度学术] 

29

Yang F, Xiao Y, Ding JH, et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy[J]. Cell Metab, 2023, 35(1):84-100. doi: 10.1016/j.cmet.2022.09.021. [百度学术] 

30

Xiao Y, Yu TJ, Xu Y, et al. Emerging therapies in cancer metabolism[J]. Cell Metab, 2023, 35(8):1283-1303. doi: 10.1016/j.cmet.2023.07.006. [百度学术] 

31

Polak P, Kim J, Braunstein LZ, et al. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer[J]. Nat Genet, 2017, 49(10):1476-1486. doi: 10.1038/ng.3934. [百度学术] 

32

Staaf J, Glodzik D, Bosch A, et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study[J]. Nat Med, 2019, 25(10):1526-1533. doi: 10.1038/s41591-019-0582-4. [百度学术] 

33

Yi M, Dong B, Qin S, et al. Advances and perspectives of PARP inhibitors[J]. Exp Hematol Oncol, 2019, 8:29. doi: 10.1186/s40164-019-0154-9. [百度学术] 

34

Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation[J]. N Engl J Med, 2017, 377(6):523-533. doi: 10.1056/NEJMoa1706450. [百度学术] 

35

Litton JK, Rugo HS, Ettl J, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation[J]. N Engl J Med, 2018, 379(8):753-763. doi: 10.1056/NEJMoa1802905. [百度学术] 

36

Robson ME, Tung N, Conte P, et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician's choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer[J]. Ann Oncol, 2019, 30(4):558-566. doi: 10.1093/annonc/mdz012. [百度学术] 

37

Tutt ANJ, Garber JE, Kaufman B, et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer[J]. N Engl J Med, 2021, 384(25):2394-2405. doi: 10.1056/NEJMoa2105215. [百度学术] 

38

Litton JK, Scoggins ME, Hess KR, et al. Neoadjuvant talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant[J]. J Clin Oncol, 2020, 38(5):388-394. doi: 10.1200/JCO.19.01304. [百度学术] 

39

Rodler E, Sharma P, Barlow WE, et al. Cisplatin with veliparib or placebo in metastatic triple-negative breast cancer and BRCA mutation-associated breast cancer (S1416): a randomised, double-blind, placebo-controlled, phase 2 trial[J]. Lancet Oncol, 2023, 24(2):162-174. doi: 10.1016/S1470-2045(22)00739-2. [百度学术] 

40

Diamond JR, Eckhardt SG, Pitts TM, et al. A phase Ⅱ clinical trial of the Aurora and angiogenic kinase inhibitor ENMD-2076 for previously treated, advanced, or metastatic triple-negative breast cancer[J]. Breast Cancer Res, 2018, 20(1):82. doi: 10.1186/s13058-018-1014-y. [百度学术] 

41

Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism[J]. Nat Rev Cancer, 2020, 20(2):74-88. doi: 10.1038/s41568-019-0216-7. [百度学术] 

42

Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours[J]. Nature, 2012, 490(7418):61-70. doi: 10.1038/nature11412. [百度学术] 

43

Sharma P, Abramson VG, O'Dea A, et al. Clinical and biomarker results from phase Ⅰ/Ⅱ study of PI3K inhibitor alpelisib plus nab-paclitaxel in HER2-negative metastatic breast cancer[J]. Clin Cancer Res, 2021, 27(14):3896-3904. doi: 10.1158/1078-0432.CCR-20-4879. [百度学术] 

44

Kim SB, Dent R, Im SA, et al. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial[J]. Lancet Oncol, 2017, 18(10):1360-1372. doi: 10.1016/S1470-2045(17)30450-3. [百度学术] 

45

Schmid P, Abraham J, Chan S, et al. Capivasertib plus paclitaxel versus placebo plus paclitaxel As first-line therapy for metastatic triple-negative breast cancer: the PAKT trial[J]. J Clin Oncol, 2020, 38(5):423-433. doi: 10.1200/JCO.19.00368. [百度学术] 

46

Oliveira M, Saura C, Nuciforo P, et al. FAIRLANE, a double-blind placebo-controlled randomized phase Ⅱ trial of neoadjuvant ipatasertib plus paclitaxel for early triple-negative breast cancer[J]. Ann Oncol, 2019, 30(8):1289-1297. doi: 10.1093/annonc/mdz177. [百度学术] 

47

Pascual J, Turner NC. Targeting the PI3-kinase pathway in triple-negative breast cancer[J]. Ann Oncol, 2019, 30(7):1051-1060. doi: 10.1093/annonc/mdz133. [百度学术] 

48

Kalinsky K, Hong FX, McCourt CK, et al. Effect of capivasertib in patients with an AKT1 E17K-mutated tumor: NCI-MATCH subprotocol EAY131-Y nonrandomized trial[J]. JAMA Oncol, 2021, 7(2):271-278. doi: 10.1001/jamaoncol.2020.6741. [百度学术] 

49

Gerratana L, Basile D, Buono G, et al. Androgen receptor in triple negative breast cancer: a potential target for the targetless subtype[J]. Cancer Treat Rev, 2018, 68:102-110. doi: 10.1016/j.ctrv.2018.06.005. [百度学术] 

50

Traina TA, Miller K, Yardley DA, et al. Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer[J]. J Clin Oncol, 2018, 36(9):884-890. doi: 10.1200/JCO.2016.71.3495. [百度学术] 

51

Bonnefoi H, Grellety T, Tredan O, et al. A phase Ⅱ trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1)[J]. Ann Oncol, 2016, 27(5):812-818. doi: 10.1093/annonc/mdw067. [百度学术] 

52

Gucalp A, Proverbs-Singh TA, Corben A, et al. Phase Ⅰ/Ⅱ trial of palbociclib in combination with bicalutamide for the treatment of androgen receptor (AR)+ metastatic breast cancer (MBC)[J]. J Clin Oncol, 2016, 34(15_suppl): TPS1103. doi: 10.1200/jco.2016.34.15_suppl.tps1103. [百度学术] 

53

Lehmann BD, Abramson VG, Sanders ME, et al. TBCRC 032 ⅠB/Ⅱ multicenter study: molecular insights to AR antagonist and PI3K inhibitor efficacy in patients with AR+ metastatic triple-negative breast cancer[J]. Clin Cancer Res, 2020, 26(9):2111-2123. doi: 10.1158/1078-0432.CCR-19-2170. [百度学术] 

54

Choupani E, Madjd Z, Saraygord-Afshari N, et al. Combination of androgen receptor inhibitor enzalutamide with the CDK4/6 inhibitor ribociclib in triple negative breast cancer cells[J]. PLoS One, 2022, 17(12):e0279522. doi: 10.1371/journal.pone.0279522. [百度学术] 

55

Goetz MP, Toi M, Campone M, et al. MONARCH 3: abemaciclib As initial therapy for advanced breast cancer[J]. J Clin Oncol, 2017, 35(32):3638-3646. doi: 10.1200/JCO.2017.75.6155. [百度学术] 

56

JrSledge GW, Toi M, Neven P, et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy[J]. J Clin Oncol, 2017, 35(25):2875-2884. doi: 10.1200/JCO.2017.73.7585. [百度学术] 

57

Slamon DJ, Neven P, Chia S, et al. Phase Ⅲ randomized study of ribociclib and fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3[J]. J Clin Oncol, 2018, 36(24):2465-2472. doi: 10.1200/JCO.2018.78.9909. [百度学术] 

58

Turner NC, Slamon DJ, Ro J, et al. Overall survival with palbociclib and fulvestrant in advanced breast cancer[J]. N Engl J Med, 2018, 379(20):1926-1936. doi: 10.1056/NEJMoa1810527. [百度学术] 

59

Cretella D, Fumarola C, Bonelli M, et al. Pre-treatment with the CDK4/6 inhibitor palbociclib improves the efficacy of paclitaxel in TNBC cells[J]. Sci Rep, 2019, 9(1):13014. doi: 10.1038/s41598-019-49484-4. [百度学术] 

60

Saleh L, Wilson C, Holen I. CDK4/6 inhibitors: a potential therapeutic approach for triple negative breast cancer[J]. MedComm (2020), 2021, 2(4):514-530. doi: 10.1002/mco2.97. [百度学术] 

61

Sava GP, Fan H, Coombes RC, et al. CDK7 inhibitors as anticancer drugs[J]. Cancer Metastasis Rev, 2020, 39(3):805-823. doi: 10.1007/s10555-020-09885-8. [百度学术] 

62

Johannessen LH, Hu S, Ke N, et al. Abstract C091: Preclinical evaluation of PK, PD, and antitumor activity of the oral, non-covalent, potent and highly selective CDK7 inhibitor, SY-5609, provides rationale for clinical development in multiple solid tumor indications[J]. Mol Cancer Ther, 2019, 18(12_Supplement):C091. doi: 10.1158/1535-7163.TARG-19-C091. [百度学术] 

63

Pan C, Jin L, Wang X, et al. Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance[J]. J Clin Invest, 2019, 129(6):2431-2445. doi: 10.1172/JCI124550. [百度学术] 

64

Liu Y, Hu Y, Xue J, et al. Advances in immunotherapy for triple-negative breast cancer[J]. Mol Cancer, 2023, 22(1):145. doi: 10.1186/s12943-023-01850-7. [百度学术] 

65

Wang Y, Zhang H, Liu C, et al. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts[J]. J Hematol Oncol, 2022, 15(1):111. doi: 10.1186/s13045-022-01325-0. [百度学术] 

66

Nanda, Chow LQ, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase ib KEYNOTE-012 study[J]. J Clin Oncol, 2016, 34(21):2460-2467. doi: 10.1200/JCO.2015.64.8931. [百度学术] 

67

Adams S, Schmid P, Rugo HS, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase Ⅱ KEYNOTE-086 study[J]. Ann Oncol, 2019, 30(3):397-404. doi: 10.1093/annonc/mdy517. [百度学术] 

68

Winer EP, Lipatov O, Im SA, et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2021, 22(4):499-511. doi: 10.1016/S1470-2045(20)30754-3. [百度学术] 

69

Schmid P, Rugo HS, Adams S, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2020, 21(1):44-59. doi: 10.1016/S1470-2045(19)30689-8. [百度学术] 

70

Cortes J, Cescon DW, Rugo HS, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial[J]. Lancet, 2020, 396(10265):1817-1828. doi: 10.1016/S0140-6736(20)32531-9. [百度学术] 

71

Schmid P, Salgado R, Park YH, et al. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: results from the phase 1b open-label, multicohort KEYNOTE-173 study[J]. Ann Oncol, 2020, 31(5):569-581. doi: 10.1016/j.annonc.2020.01.072. [百度学术] 

72

Nanda, Liu MC, Yau C, et al. Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: an analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial[J]. JAMA Oncol, 2020, 6(5):676-684. doi: 10.1001/jamaoncol.2019.6650. [百度学术] 

73

Schmid P, Cortes J, Dent R, et al. Event-free survival with pembrolizumab in early triple-negative breast cancer[J]. N Engl J Med, 2022, 386(6):556-567. doi: 10.1056/NEJMoa2112651. [百度学术] 

74

Mittendorf EA, Zhang H, Barrios CH, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial[J]. Lancet, 2020, 396(10257):1090-1100. doi: 10.1016/S0140-6736(20)31953-X. [百度学术] 

75

Han H, Diab S, Alemany C, et al. Abstract PD1-06: Open label phase 1b/2 study of ladiratuzumab vedotin in combination with pembrolizumab for first-line treatment of patients with unresectable locally-advanced or metastatic triple-negative breast cancer[J]. Cancer Res, 2020, 80(4_Supplement):PD1-06. doi: 10.1158/1538-7445.SABCS19-PD1-06. [百度学术] 

76

Schmid P, Im S, Armstrong A, et al. BEGONIA: Phase 1b/2 study of durvalumab (D) combinations in locally advanced/metastatic triple-negative breast cancer (TNBC)—initial results from arm 1, d+paclitaxel (P), and arm 6, d+trastuzumab deruxtecan (T-DXd)[J]. J Clin Oncol, 2021, 39:1023. doi: 10.1200/JCO.2021.39.15_SUPPL.1023. [百度学术] 

77

Liu J, Liu Q, Li Y, et al. Efficacy and safety of camrelizumab combined with apatinib in advanced triple-negative breast cancer: an open-label phase Ⅱ trial[J]. J Immunother Cancer, 2020, 8(1):e000696. doi: 10.1136/jitc-2020-000696. [百度学术] 

78

Vinayak S, Tolaney SM, Schwartzberg L, et al. Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer[J]. JAMA Oncol, 2019, 5(8):1132-1140. doi: 10.1001/jamaoncol.2019.1029. [百度学术] 

79

Labanieh L, Majzner RG, Klysz D, et al. Enhanced safety and efficacy of protease-regulated CAR-T cell receptors[J]. Cell, 2022, 185(10):1745-1763. doi: 10.1016/j.cell.2022.03.041. [百度学术] 

80

Yan T, Zhu LF, Chen J. Current advances and challenges in CAR T-Cell therapy for solid tumors: tumor-associated antigens and the tumor microenvironment[J].Exp Hematol Oncol, 2023, 12(1):1-18. doi: 10.1186/s40164-023-00373-7. [百度学术] 

81

Harrasser M, Gohil SH, Lau H, et al. Inducible localized delivery of an anti-PD-1 scFv enhances anti-tumor activity of ROR1 CAR-T cells in TNBC[J]. Breast Cancer Res, 2022, 24(1):39. doi: 10.1186/s13058-022-01531-1. [百度学术] 

82

Xia L, Zheng ZZ, Liu JY, et al. EGFR-targeted CAR-T cells are potent and specific in suppressing triple-negative breast cancer both in vitro and in vivo[J]. Clin Transl Immunology, 2020, 9(5):e01135. doi: 10.1002/cti2.1135. [百度学术] 

83

Peng M, Mo YZ, Wang Y, et al. Neoantigen vaccine: an emerging tumor immunotherapy[J]. Mol Cancer, 2019, 18(1):128. doi: 10.1186/s12943-019-1055-6. [百度学术] 

84

Rugo HS, Cortes J, Barrios CH, et al. GLORIA: phase Ⅲ, open-label study of adagloxad simolenin/OBI-821 in patients with high-risk triple-negative breast cancer[J]. Future Oncol, 2022. doi: 10.2217/fon-2022-0812. [Online ahead of print] [百度学术] 

85

Hung JT, Chen IJ, Ueng SH, et al. The clinical relevance of humoral immune responses to Globo H-KLH vaccine adagloxad simolenin (OBI-822)/OBI-821 and expression of Globo H in metastatic breast cancer[J]. J Immunother Cancer, 2022, 10(6):e004312. doi: 10.1136/jitc-2021-004312. [百度学术] 

86

Jaini R, Kesaraju P, Johnson JM, et al. An autoimmune-mediated strategy for prophylactic breast cancer vaccination[J]. Nat Med, 2010, 16(7):799-803. doi: 10.1038/nm.2161. [百度学术] 

87

No authors listed. "very compelling" results for ADC in TNBC trial[J]. Cancer Discov, 2022, 12(2):280-281. doi: 10.1158/2159-8290.CD-NB2021-0407. [百度学术] 

88

Jeon Y, Jo U, Hong J, et al. Trophoblast cell-surface antigen 2 (TROP2) expression in triple-negative breast cancer[J]. BMC Cancer, 2022, 22(1):1014. doi: 10.1186/s12885-022-10076-7. [百度学术] 

89

Bardia A, Tolaney SM, Punie K, et al. Biomarker analyses in the phase Ⅲ ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer[J]. Ann Oncol, 2021, 32(9): 1148-1156. doi: 10.1016/j.annonc.2021.06.002. [百度学术] 

90

Asselah A, Ma CX, Nowecki Z, et al. 4 Datopotamab Deruxtecan (Dato-DXd) + Durvalumab (D) as First-Line (1L) Treatment for Unresectable Locally Advanced/ Metastatic Triple-Negative Breast Cancer (a/mTNBC): Updated Results From BEGONIA, a Phase 1b/2 Study[C]//40th Annual Miami Breast Cancer Conference®. Miami Breast Cancer Conference® AbstractsSupplement, Oncology, 2023, 37 (suppl_4):10-11. DOI: 10.1158/1538-7445.sabcs22-pd11-09 [百度学术] 

91

Spring L, Tolaney SM, Desai NV, et al. Phase 2 study of response-guided neoadjuvant sacituzumab govitecan (IMMU-132) in patients with localized triple-negative breast cancer: Results from the NeoSTAR trial [J]. J Clin Oncol, 2022, 40(16_suppl):512. doi: 10.1200/JCO.2022.40.16_suppl.512. [百度学术] 

92

Cortés J, Kim SB, Chung WP, et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer[J]. N Engl J Med, 2022, 386(12):1143-1154. doi: 10.1056/NEJMoa2115022. [百度学术] 

93

Hurvitz SA, Hegg R, Chung WP, et al. Trastuzumab deruxtecan versus trastuzumab emtansine in patients with HER2-positive metastatic breast cancer: updated results from DESTINY-Breast03, a randomised, open-label, phase 3 trial[J]. Lancet, 2023, 401(10371):105-117. doi: 10.1016/S0140-6736(22)02420-5. [百度学术] 

94

Modi, Park H, Murthy RK, et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase ib study[J]. J Clin Oncol, 2020, 38(17):1887-1896. doi: 10.1200/JCO.19.02318. [百度学术] 

95

Modi SN, Jacot W, Yamashita T, et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer[J]. N Engl J Med, 2022, 387(1):9-20. doi: 10.1056/NEJMoa2203690. [百度学术]