摘要
胰肠吻合是胰腺重建手术中最具挑战性的步骤之一,其影响患者的预后。胰腺具有形态上窄下宽、组织脆弱、富含消化酶以及肠道持续蠕动等特点,这些因素易导致胰肠吻合口的松动和术后胰瘘的发生。通过力学建模分析及临床实践总结,笔者提出了一种基于力学原理的胰肠吻合方法。该方法概括为“1管2针3缝”,即1根胰管支撑管、2种和2根不同缝线以及3种不同的缝合方法。本文将详细介绍这一操作方法,并深入解析其技术原理。此外,对笔者中心病例进行回顾性分析总结发现,该方法可有效降低术后胰瘘的发生率。
力学原理被广泛应用于外科手术,也是外科技术发展的重要推动因
在过去的百余年间,胰十二指肠切除术始终占据着肝胆胰外科领域的制高点,其难度与风险之高,历来为医学界所公认。术后常伴随着胆汁漏、胰瘘、出血等严重并发症,而胰肠吻合的质量,更是决定手术成功与否的关键因素,备受学者们的广泛关注与深入研
2014年,Neychev
在胰肠吻合术的研究与实践中,除了对针线与胰腺组织相互作用的深入探索外,力反馈系统的引入也为腹腔镜手术带来了革命性的变化。这一技术为外科医生提供了实时的操作力反馈信息,使得手术过程更加精准可控,从而大大提高了腹腔镜胰十二指肠切除术的安全性与成功
综上所述,力学原理在胰肠吻合术中的应用,为优化手术技术、减少术后并发症提供了重要的理论和技术支持。通过合理选择缝合针和缝线、改进缝合技术、应用力反馈系统以及合理利用术后负压引流等方案,可以显著降低并发症,改善患者术后的生存质量。
笔者提出的基于力学原理的胰肠吻合术,精髓可凝练为“1管2针3缝”法,即依托1根胰管支撑导管,结合2种类型与2根差异化缝线的应用,以及实施3种精心设计的缝合策略。首先,选定并放置适宜粗细的胰管支撑导管,为防止胰腺支撑管早期脱落及胰肠吻合口结构的稳定性和牢固性,匠心独运地采用了2种类型与2根独特缝线策略(

图1 2种和2根不同缝线的区别和目的 A-B:使用2根可吸收缝线固定胰管支撑管,缝线被吸收后支撑管可自行脱落;C-D:使用2根不可吸收缝线进行前后壁的吻合,1根缝线脱落时另1根不受影响,保证吻合的牢固性
Figure 1 Differences and purposes of two types of sutures and two sutures A-B: Using two absorbable sutures to secure the pancreatic duct support tube; once the sutures are absorbed, the support tube can detach on its own; C-D: Using two non-absorbable sutures for the anastomosis of the anterior and posterior walls; when one suture detaches, the other remains unaffected, ensuring the stability of the anastomosis
具体步骤:⑴ 选择与胰管口径相契合的支撑导管,前端剪数个小侧孔后精准置入胰管,确保侧孔隐蔽不外露,随后利用3-0 VICRYL(可吸收缝线)固定其于胰腺残端(

图2 胰肠吻合手术步骤拆解 A:固定胰腺端支撑管;B:胰腺上缘8字缝合止血;C:全程贯穿缝合;D:空肠开孔;E:“U”型缝合固定肠端支撑管;F:半程后壁缝合;G:胰腺下缘8字缝合止血;H:半程前壁宽基底缝合
Figure 2 Detailed steps of pancreaticojejunostomy procedure A: Fixing the pancreatic end support stent; B: Hemostasis with 8-shaped suture on the upper edge of the pancreas; C: Continuous through-and-through suturing; D: Opening in the jejunum; E: "U"-shaped suturing to fix the intestinal end support stent; F: Partial posterior wall suturing; G: Hemostasis with 8-shaped suture on the lower edge of the pancreas; H: Partial anterior wall wide-base suturing with a wide base
上述步骤主要借鉴洪德飞教授的“洪氏一针法

视频1 “1管2针3缝”胰肠吻合术手术
Video 1 The "1-tube, 2-needle, 3-suture" pancreaticojejunostomy
扫描至移动设备观看手术视频:
本文中研究团队立足于器官组织的自然特性,在胰肠吻合过程中,精妙地借势肠壁环形肌的自发性收缩力,使肠管更为紧密地包绕胰腺残端,以此显著降低胰瘘的发生率。这种基于组织自身的生物力学特性来优化手术效果,笔者称之为“生物自驱动外科力学”。从力学视角深入审视,“1管2针3缝”的技术架构,确保了吻合口在三维空间内的全面稳定性,能够有效抵御术后各类潜在的机械应力冲击,从而极大提升了手术的稳固性和安全性。通过实施分段、分层的精细化缝合策略,不仅缓解了单一组织层面的应力集中现象,更实现了机械应力的均衡分散,有效降低了组织撕裂及渗漏的潜在风险。
在此理论框架下,环形肌的受力机制成为本中心胰肠吻合术实践中的核心考量因素,同时也为胰腺前壁宽基底缝合技术奠定了坚实的理论基础。胃肠道的独特解剖结构,由斜肌层、环形肌层及纵肌层交织而成,这三层肌肉共同塑造了肠道的力学特性。无论是肌肉的自主收缩,还是管腔内部容物所引发的外力作用,都会促使肠道组织依据力学规律进行自我重塑。在此过程中,上皮细胞及非上皮细胞均会承受形式多样的机械力作用,而环形肌的规律性收缩则尤为关键,它能够在组织周边引发强烈的切向力效
未采用宽基底缝合时,空肠对胰腺的包绕程度有限,此时环形肌的收缩力方向趋于指向肠腔内部(

图3 采用与不采用宽基底连续缝合后吻合口的变化 A:普通缝合,胰腺残端未被小肠包裹;B:宽基底连续缝合,胰腺残端被小肠包裹
Figure 3 Changes in anastomosis with and without wide base continuous suturing A: Standard suturing, pancreatic stump not covered by the small intestine; B: Wide base continuous suturing, pancreatic stump covered by the small intestine

图4 胰肠吻合后的空肠环形肌受力分析(F表示环形肌的收缩力,→表示收缩力方向) A:普通吻合完毕后环形肌的张力状态;B:宽基底连续缝合后空肠环形肌的张力状态
Figure 4 Analysis of force on the jejunal circular muscle after pancreaticojejunostomy (F representing the contraction force of the circular muscle, and → indicating the contraction force direction) A: Tension state of the circular muscle after standard anastomosis; B: Tension state of the jejunal circular muscle after wide base continuous suturing
回顾性分析2023年6月—2024年4月期间笔者团队实施的43例涉及胰肠吻合术的手术患者,包括胰腺癌16例,胆管癌7例,壶腹部肿瘤8例,以及其他病变类型12例(
项目 | 数值 |
---|---|
年龄(岁,) | 60.9±4.7 |
性别[n(%)] | |
男 | 28(65.1) |
女 | 15(34.9) |
手术类型[n(%)] | |
Whipple | 36(83.7) |
单纯胰肠吻合术 | 7(16.3) |
病理类型[n(%)] | |
胰腺癌 | 16(37.2) |
胆管癌 | 7(16.3) |
壶腹部肿瘤 | 8(18.6) |
其他病变 | 12(17.9) |
胰腺肠吻合用时(min,) | 15±5 |
术后第1天引流管淀粉酶(IU/L,) | 3 475±4 624 |
术后1周引流管淀粉酶(IU/L) | |
≥500 | 6(14.0) |
<500 | 37(86.0) |
术后胰瘘[n(%)] | |
C级胰瘘 | 1(2.3) |
A/B级胰瘘 | 3(7.0) |
15 d内再入院[n(%)] | 0(0.0) |
90 d内死亡[n(%)] | 0(0.0) |
力学原理在微创外科手术领域的巧妙运用,正引领着外科诊疗技术的革新与飞跃。这一应用不仅赋予了外科医生前所未有的精准操作能力,更显著降低了手术风险,提升了手术成功率,为患者术后的生活质量带来了实质性的改善。随着科学技术的日新月异,融合力学特性的手术器械正逐步在个性化医疗与智能手术体系的构建中扮演关键角
作者贡献声明
张津鸣为文章主要撰写人,负责完成文章初稿的写作;沙洪存参与文章修改;陈鸣宇指导论文写作和修改,提供手术视频以及绘图指导。全体作者都阅读并同意最终的文本。
利益冲突
所有作者均声明不存在利益冲突。
参考文献
Takabi B, Tai BL. A review of cutting mechanics and modeling techniques for biological materials[J]. Med Eng Phys, 2017, 45:1-14. doi:10.1016/j.medengphy.2017.04.004. [百度学术]
Teot L, Ohura N. Challenges and management in wound care[J]. Plast Reconstr Surg, 2021, 147(1S-1):9S-15S. doi:10.1097/PRS.0000000000007628. [百度学术]
Chang K, Gokcal F, Kudsi OY. Robotic biliary surgery[J]. Surg Clin North Am, 2020, 100(2):283-302. doi:10.1016/j.suc.2019.12.002. [百度学术]
Cundy TP, Thangaraj E, Rafii-Tari H, et al. Force-Sensing Enhanced Simulation Environment (ForSense) for laparoscopic surgery training and assessment[J]. Surgery, 2015, 157(4):723-731. doi:10.1016/j.surg.2014.10.015. [百度学术]
Rosen M, Ponsky J. Minimally invasive surgery[J]. Endoscopy, 2001, 33(4):358-366. doi:10.1055/s-2001-13689. [百度学术]
Zhao Z, Gu J. Open surgery in the era of minimally invasive surgery[J]. Chung Kuo Yen Cheng Yen Chiu, 2022, 34(1): 63-65. doi:10.21147/j.issn.1000-9604.2022.01.06. [百度学术]
蔡秀军, 胡家豪. 肝脏微创外科近10年的发展与展望[J]. 中华外科杂志, 2024, 62(1):6-9. doi:10.3760/cma.j.cn112139-20231107-00217. [百度学术]
Cai XJ, Hu JH. Minimally invasive liver surgery: progress in the last decade and evolving trends[J]. Chinese Journal of Surgery, 2024, 62(1):6-9. doi:10.3760/cma.j.cn112139-20231107-00217. [百度学术]
Madadi-Sanjani O, Petersen C, Ure B. Minimally invasive hepatobiliary surgery[J]. Clin Perinatol, 2017, 44(4):805-818. doi:10.1016/j.clp.2017.08.004. [百度学术]
McCarron FN, Vrochides D, Martinie JB. Current progress in robotic hepatobiliary and pancreatic surgery at a high-volume center[J]. Ann Gastroenterol Surg, 2023, 7(6):863-870. doi:10.1002/ags3.12737. [百度学术]
Goodwin K, Nelson CM. Mechanics of development[J]. Dev Cell, 2021, 56(2):240-250. doi:10.1016/j.devcel.2020.11.025. [百度学术]
Laleman W, Vanderschueren E, Mehdi ZS, et al. Endoscopic procedures in hepatology: current trends and new developments[J]. J Hepatol, 2024, 80(1):124-139. doi:10.1016/j.jhep.2023.08.032. [百度学术]
Kim S, Uroz M, Bays JL, et al. Harnessing mechanobiology for tissue engineering[J]. Dev Cell, 2021, 56(2):180-191. doi:10.1016/j.devcel.2020.12.017. [百度学术]
彭承宏. 机器人辅助外科手术系统临床应用的现状与前景[J]. 中华肝胆外科杂志, 2011, 17(8):606-609. doi:10.3760/cma.j.issn.1007-8118.2011.08.003. [百度学术]
Peng CH. Status and prospects in clinical application of robotic assisted surgery system[J]. Chinese Journal of Hepatobiliary Surgery, 2011, 17(8):606-609. doi:10.3760/cma.j.issn.1007-8118.2011.08.003. [百度学术]
Cameron JL, He J. Two thousand consecutive pancreaticoduodenectomies[J]. J Am Coll Surg, 2015, 220(4):530-536. doi:10.1016/j.jamcollsurg.2014.12.031. [百度学术]
Suzuki Y, Fujino Y, Tanioka Y, et al. Selection of pancreaticojejunostomy techniques according to pancreatic texture and duct size[J]. Arch Surg, 2002, 137(9):1044-1047. doi:10.1001/archsurg.137.9.1044. [百度学术]
Kawaida H, Kono H, Hosomura N, et al. Surgical techniques and postoperative management to prevent postoperative pancreatic fistula after pancreatic surgery[J]. World J Gastroenterol, 2019, 25(28):3722-3737. doi:10.3748/wjg.v25.i28.3722. [百度学术]
Andrianello S, Pea A, Pulvirenti A, et al. Pancreaticojejunostomy after pancreaticoduodenectomy: Suture material and incidence of postoperative pancreatic fistula[J]. Pancreatology, 2016, 16(1):138-141. doi:10.1016/j.pan.2015.11.004. [百度学术]
Neychev VK, Sladinger PF. Minimizing shear and compressive stress during pancreaticojejunostomy: rationale of a new technical modification[J]. JAMA Surgery, 2014, 149(2):203-207. doi: 10.1001/jamasurg.2013.2256. [百度学术]
白雪莉, 陈伟, 梁廷波. 中国腹腔镜胰十二指肠切除术20年胰肠重建术式变迁与未来发展[J]. 中华普外科手术学杂志:电子版, 2021, 15(3):250-254. doi:10.3877/cma.j.issn.1674-3946.2021.03.004. [百度学术]
Bai XL, Chen W, Liang TB. Laparoscopic pancreaticoduodenectomy over a 20-year period in China-Evolvement of reconstruction following pancreaticojejunostomy[J]. Chinese Journal of Operative Procedures of General Surgery:Electronic Edition, 2021, 15(3):250-254. doi:10.3877/cma.j.issn.1674-3946.2021.03.004. [百度学术]
陈勇军, 尹新民, 吴河水, 等. 陈氏贯穿纵向"U"型胰肠吻合术的理论与实践[J]. 中国实用外科杂志, 2021, 41(6):668-672. doi:10.19538/j.cjps.issn1005-2208.2021.06.09. [百度学术]
Chen YJ, Yin XM, Wu HS, et al. Theory and practice of Chen's penetrating longitudinal "U" pancreaticojejunostomy[J]. Chinese Journal of Practical Surgery, 2021, 41(6):668-672. doi:10.19538/j.cjps.issn1005-2208.2021.06.09. [百度学术]
李德宇. 精准胰十二指肠切除术的技术要点[J]. 中华实用诊断与治疗杂志, 2017, 31(3):213-215. doi:10.13507/j.issn.1674-3474.2017.03.002. [百度学术]
Li DY. Technical points of accurate pancreaticoduodenectomy[J]. Journal of Chinese Practical Diagnosis and Therapy, 2017, 31(3):213-215. doi:10.13507/j.issn.1674-3474.2017.03.002. [百度学术]
Tholey G, Desai JP, Castellanos AE. Force feedback plays a significant role in minimally invasive surgery: results and analysis[J]. Ann Surg, 2005, 241(1):102-109. doi:10.1097/01.sla.0000149301.60553.1e. [百度学术]
Overtoom EM, Horeman T, Jansen FW, et al. Haptic feedback, force feedback, and force-sensing in simulation training for laparoscopy: a systematic overview[J]. J Surg Educ, 2019, 76(1):242-261. doi:10.1016/j.jsurg.2018.06.008. [百度学术]
Rodrigues SP, Horeman T, Sam P, et al. Influence of visual force feedback on tissue handling in minimally invasive surgery[J]. Br J Surg, 2014, 101(13):1766-1773. doi:10.1002/bjs.9669. [百度学术]
Dinesh S, Poonguzhali S, Satish Devakumar M, et al. A prospective study on a suture force feedback device for training and evaluating junior surgeons in anastomotic surgical closure[J]. Surg Innov, 2024:15533506241264382. doi:10.1177/15533506241264382. [百度学术]
刘亮, 徐志航, 王文权, 等. 精准联合综合策略防治胰十二指肠切除术后胰瘘[J]. 中华消化外科杂志, 2023, 22(5):657-662. doi:10.3760/cma.j.cn115610-20230401-00143. [百度学术]
Liu L, Xu ZH, Wang WQ, et al. Prevention and management of pancreatic fistula after pancreatoduodenectomy with precise and comprehensive opinion[J]. Chinese Journal of Digestive Surgery, 2023, 22(5):657-662. doi:10.3760/cma.j.cn115610-20230401-00143. [百度学术]
洪德飞, 刘建华, 刘亚辉, 等. 一针法胰肠吻合用于腹腔镜胰十二指肠切除术多中心研究[J]. 中国实用外科杂志, 2018, 38(7):792-795. doi:10.19538/j.cjps.issn1005-2208.2018.07.23. [百度学术]
Hong DF, Liu JH, Liu YH, et al. Single-stitch pancreatic duct suture for pancreaticojejunostomy in laparoscopic pancreaticoduodenectomy: a multiple center prospective study[J]. Chinese Journal of Practical Surgery, 2018, 38(7):792-795. doi:10.19538/j.cjps.issn1005-2208.2018.07.23. [百度学术]
彭淑牖, 刘颖斌, 牟一平, 等. 捆绑式胰肠吻合术-150例临床应用[J]. 中华医学杂志, 2002, 82(6):368-370. doi:10.3760/j:issn:0376-2491.2002.06.004. [百度学术]
Peng SY, Liu YB, Mou YP, et al. Binding pancreaticojejunostomy: clinical report of 150 cases[J]. National Medical Journal of China, 2002, 82(6):368-370. doi:10.3760/j:issn:0376-2491.2002.06.004. [百度学术]
彭淑牖, 刘颖斌, 牟一平, 等. 捆绑式胰肠吻合术100例报告[J]. 胰腺病学, 2001, 1(1):43-45. doi:10.3760/cma.j.issn.1674-1935.2001.01.017. [百度学术]
Peng SY, Liu YB, Mou YP, et al. A report of 100 cases on the binding pancreaticojejunostomy[J]. Chinese Journal of Pancreatology, 2001, 1(1):43-45. doi:10.3760/cma.j.issn.1674-1935.2001.01.017. [百度学术]
陈孝平, 张志伟, 张必翔, 等. 双 “U” 形贯穿缝合法行胰腺-空肠端端套入式吻合[J]. 中华外科杂志, 2007, 45(5):355-356. doi:10.3760/j.issn: 0529-5815.2007.05.020. [百度学术]
Chen XP, Zhang ZW, Zhang BX, et al. End-to-end nested pancreaticojejunostomy by double "U" -shaped through suture method[J]. Chinese Journal of Surgery, 2007, 45(5):355-356. doi:10.3760/j.issn: 0529-5815.2007.05.020. [百度学术]
陈孝平. 陈氏贯穿胰腺连续缝合法行肠壁内翻套入式胰肠吻合术的几点体会[J]. 腹部外科, 2019, 32(2):77-79. doi:10.3969/j.issn.1003-5591.2019.02.001. [百度学术]
Chen XP. Experiences of Chen's continuous suture through the pancreas for intussusception pancreaticojejunostomy of intestinal wall[J]. Journal of Abdominal Surgery, 2019, 32(2):77-79. doi:10.3969/j.issn.1003-5591.2019.02.001. [百度学术]
洪德飞, 刘亚辉, 刘建华, 等. 腹腔镜胰肠吻合技术[J]. 中国实用外科杂志, 2022, 42(5):539-549. doi:10.19538/j.cjps.issn1005-2208.2022.05.15. [百度学术]
Hong DF, Liu YH, Liu JH, et al. Techniques of laparoscopic pancreaticoduodenostomy[J]. Chinese Journal of Practical Surgery, 2022, 42(5):539-549. doi:10.19538/j.cjps.issn1005-2208.2022.05.15. [百度学术]
Avvari KR. Biomechanics of the small intestinal contractions[M]//Digestive System-Recent Advances. London: IntechOpen, 2020. doi: 10.5772/intechopen.86539. [百度学术]
颜伟康, 刘颖斌. 胰肠吻合方式发展历史与现状[J]. 中国实用外科杂志, 2022, 42(4):464-467. doi:10.19538/j.cjps.issn1005-2208.2022.04.21. [百度学术]
Yan WK,Liu YB. The history and recent advances of pancreaticojejunostomy[J]. Chinese Journal of Practical Surgery, 2022, 42(4):464-467. doi:10.19538/j.cjps.issn1005-2208.2022.04.21. [百度学术]
Li MX, Wang HY, Yuan CH, et al. Shark mouth pancreaticojejunostomy reduced the rate of clinically related pancreatic fistula: a historic cohort comparative analysis[J]. HPB (Oxford), 2022, 24(5):727-736. doi:10.1016/j.hpb.2021.09.023. [百度学术]
Shrikhande SV, Sivasanker M, Vollmer CM, et al. Pancreatic anastomosis after pancreatoduodenectomy: a position statement by the International Study Group of Pancreatic Surgery (ISGPS)[J]. Surgery, 2017, 161(5):1221-1234. doi:10.1016/j.surg.2016.11.021. [百度学术]
Anteby R, Horesh N, Soffer S, et al. Deep learning visual analysis in laparoscopic surgery: a systematic review and diagnostic test accuracy meta-analysis[J]. Surg Endosc, 2021, 35(4):1521-1533. doi:10.1007/s00464-020-08168-1. [百度学术]
Taylor ZA, Cheng M, Ourselin S. High-speed nonlinear finite element analysis for surgical simulation using graphics processing units[J]. IEEE Trans Med Imaging, 2008, 27(5):650-663. doi:10.1109/TMI.2007.913112. [百度学术]
Queisner M, Eisenträger K. Surgical planning in virtual reality: a systematic review[J]. J Med Imaging (Bellingham), 2024, 11(6):062603. doi:10.1117/1.JMI.11.6.062603. [百度学术]
Miller K. Computational biomechanics for patient-specific applications[J]. Ann Biomed Eng, 2016, 44(1):1-2. doi:10.1007/s10439-015-1519-9. [百度学术]