摘要
外周动脉疾病(PAD)患者死亡和截肢的风险较高,但很多PAD患者没有症状或临床症状不典型,普遍存在低知晓率和低诊断率。随着人口老龄化和危险因素的流行,PAD负担会增加。人工智能(AI)是指能够模拟人类智能并执行人类任务的机器和算法,涵盖了机器学习、深度学习、自然语言处理、计算机视觉等方面。AI在PAD中的应用尚处于起步阶段,但其前景是巨大的。本文总结目前AI在PAD患者中的临床应用和局限性。
2024年美国心脏病学会/心脏协会/血管外科学会等多学科联合指
NLP是指计算机智能地处理人类语言(包括口头和书面语言)的能力,可用于分析大量文本形式的内容(如电子病历,特别是非结构化的叙述性临床笔记,或放射科医生对图像的解读报告
尽管这些初步结果很有希望,但NLP在PAD中的应用仍面临一定的挑战。非结构化的临床笔记中包含大量专业术语、隐含信息和复杂的逻辑关系,未来需要加强高效NLP技术的开发,满足医疗实践中的期望和需求。通过NLP技术可以自动识别和分析大量文本形式的内容,从而准确识别出PAD患者,还为后续的临床决策提供坚实的基础,实现对PAD患者风险调整策略的智能提醒(包括抗血小板治疗、降血脂治疗、降压治疗以及戒烟等)。
ML作为AI的一个重要子领域,是通过大量数据或其他经验自动改进计算机算法的研究,ML可用于PAD患者的识别诊断、预后评估和治疗决策。在ML算法的开发中,通常被划分为训练、验证和测试三个部分,按照其是否标记数据分为有监督学习和无监督学
多项研究开发了识别PAD的ML算法。2016年,在一项包含1 755例患者的前瞻性观察研究中,Ross
ML模型可以相当准确地预测PAD患者重大不良心血管事件、重大不良肢体事件以及全因死
2013年,Yurtkuran
ML在PAD的诊断、分类、预后预测以及治疗优化方面展现出了巨大的潜力,但ML存在数据安全和隐私保护,模型可解释性不强等方面的问
DL是一种利用人工神经网络(受人类生物学启发)处理大量数据并提取更高层次和更复杂模式的M
常规二维超声检查很难在可接受的时间范围内观察到PAD的下肢血管树,而且动脉粥样硬化病变的测量结果可能与观察者之间的差异有关。2007年,Janvier
CTA的解读和分析耗时、繁琐,需要操作者的专业知识,而且不同研究之间可能存在差异。在265例接受下肢动脉CTA的患者中,Dai
总的来说,AI在PAD患者管理中的应用前景广阔,在PAD的诊断、分类、预后预测以及治疗优化方面展现出了巨大的潜力,并为临床医生改进工作流程和更好地规划手术干预提供了新的工具,有助于发展精准医疗,可通过考虑PAD的严重程度和风险,提出个性化的治疗方法。然而,AI在日常临床实践中的应用尚未得到充分验证,存在数据安全和隐私保护,模型可解释性不强等方面的问题。过度训练的AI学习模型可能会导致所应用的模型过拟合,进而影响模型在真实世界数据中的普适性和性能,可使用能代表目标人群的大型可信数据集进行训练并选择适当的具有较好泛化能力的算法。其次,与经典传统的统计方法不同,许多AI模型具有“黑箱”或“不可解释”性,因为决策的过程对用户或开发者而言是不透明、难以理解
作者贡献声明
任洪成负责论文起草,数据统计,论文撰写;陈作观负责论文审改、项目资金支持;李拥军负责理论指导、论文审改。
利益冲突
所有作者均声明不存在利益冲突。
参考文献
Gornik HL, Aronow HD, Goodney PP, et al. 2024 ACC/AHA/AACVPR/APMA/ABC/SCAI/SVM/SVN/SVS/SIR/VESS Guideline for the Management of Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation, 2024, 149(24):e1313-e1410. doi:10.1161/CIR.0000000000001251. [百度学术]
Fowkes FG, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis[J]. Lancet, 2013, 382(9901):1329-1340. doi:10.1016/S0140-6736(13)61249-0. [百度学术]
Aday AW, Matsushita K. Epidemiology of peripheral artery disease and polyvascular disease[J]. Circ Res, 2021, 128(12):1818-1832. doi:10.1161/CIRCRESAHA.121.318535. [百度学术]
Takahara M, Soga Y, Iida O. Lower extremity arterial disease vs. coronary artery disease: mortality differences after revascularization[J]. Eur Heart J, 2024, 45(18):1634-1643. doi:10.1093/eurheartj/ehae207. [百度学术]
Polonsky TS, McDermott MM. Lower extremity peripheral artery disease without chronic limb-threatening ischemia: a review[J]. JAMA, 2021, 325(21):2188-2198. doi:10.1001/jama.2021.2126. [百度学术]
McDermott MM. Peripheral artery disease: past and future[J]. Circulation, 2024, 149(15):1151-1153. doi:10.1161/CIRCULATIONAHA.123.065470. [百度学术]
Allison MA, Armstrong DG, Goodney PP, et al. Health disparities in peripheral artery disease: a scientific statement from the American heart association[J]. Circulation, 2023, 148(3):286-296. doi:10.1161/CIR.0000000000001153. [百度学术]
Criqui MH, Matsushita K, Aboyans V, et al. Lower extremity peripheral artery disease: contemporary epidemiology, management gaps, and future directions: a scientific statement from the American heart association[J]. Circulation, 2021, 144(9):e171-e191. doi:10.1161/CIR.0000000000001005. [百度学术]
Song P, Rudan D, Zhu Y, et al. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis[J]. Lancet Glob Health, 2019, 7(8):e1020-e1030. doi:10.1016/S2214-109X(19)30255-4. [百度学术]
Dossabhoy SS, Ho VT, Ross EG, et al. Artificial intelligence in clinical workflow processes in vascular surgery and beyond[J]. Semin Vasc Surg, 2023, 36(3):401-412. doi:10.1053/j.semvascsurg.2023.07.002. [百度学术]
Matheny ME, Whicher D, Thadaney Israni S. Artificial intelligence in health care: a report from the national academy of medicine[J]. JAMA, 2020, 323(6):509-510. doi:10.1001/jama.2019.21579. [百度学术]
Lareyre F, Nasr B, Chaudhuri A, et al. Comprehensive Review of Natural Language Processing (NLP) in Vascular Surgery[J]. EJVES Vasc Forum, 2023, 60:57-63. doi: 10.1016/j.ejvsvf.2023.09.002. [百度学术]
Savova GK, Fan J, Ye Z, et al. Discovering peripheral arterial disease cases from radiology notes using natural language processing[J]. AMIA Annu Symp Proc, 2010, 2010:722-726. DOI: doi:http://dx.doi.org/ [百度学术]
Afzal N, Sohn S, Abram S, et al. Mining peripheral arterial disease cases from narrative clinical notes using natural language processing[J]. J Vasc Surg, 2017, 65:1753-1761. doi:10.1016/j.jvs.2016.11.031. [百度学术]
Afzal N, Mallipeddi VP, Sohn S, et al. Natural language processing of clinical notes for identification of critical limb ischemia[J]. Int J Med Inform, 2018, 111:83-89. doi:10.1016/j.ijmedinf.2017.12.024. [百度学术]
Weissler EH, Zhang JK, Lippmann S, et al. Use of natural language processing to improve identification of patients with peripheral artery disease[J]. Circ Cardiovasc Interv, 2020, 13(10):e009447. doi:10.1161/CIRCINTERVENTIONS.120.009447. [百度学术]
Flores AM, Demsas F, Leeper NJ, et al. Leveraging machine learning and artificial intelligence to improve peripheral artery disease detection, treatment, and outcomes[J]. Circ Res, 2021, 128(12):1833-1850. doi:10.1161/CIRCRESAHA.121.318224. [百度学术]
Haug CJ, Drazen JM. Artificial Intelligence and Machine Learning in Clinical Medicine, 2023[J]. N Engl J Med, 2023, 388(13):1201-1208. doi: 10.1056/NEJMra2302038. [百度学术]
刘才广, 莫屈, 肖羿, 等. 医学影像人工智能在甲状腺癌诊疗中的应用:现状与展望[J]. 中国普通外科杂志, 2024, 33(11):1874-1882. doi:10.7659/j.issn.1005-6947.2024.11.014. [百度学术]
Liu CG, Mo Q, Xiao Y, et al. Applications of medical imaging artificial intelligence in the diagnosis and treatment of thyroid cancer: current status and future prospects[J]. China Journal of General Surgery, 2024, 33(11):1874-1882. doi:10.7659/j.issn.1005-6947.2024.11.014. [百度学术]
彭晓煜, 石和凯, 宋致成, 等. 人工智能在疝与腹壁外科的应用与未来发展[J]. 中国普通外科杂志, 2024, 33(10):1580-1587. doi:10.7659/j.issn.1005-6947.2024.10.004. [百度学术]
Peng XY, Shi HK, Song ZC, et al. Application and future development of artificial intelligence in hernia and abdominal wall surgery[J]. China Journal of General Surgery, 2024, 33(10):1580-1587. doi:10.7659/j.issn.1005-6947.2024.10.004. [百度学术]
Ross EG, Shah NH, Dalman RL, et al. The use of machine learning for the identification of peripheral artery disease and future mortality risk[J]. J Vasc Surg, 2016, 64(5):1515-1522. doi: 10.1016/j.jvs.2016.04.026. [百度学术]
McCarthy CP, Ibrahim NE, van Kimmenade RRJ, et al. A clinical and proteomics approach to predict the presence of obstructive peripheral arterial disease: From the Catheter Sampled Blood Archive in Cardiovascular Diseases (CASABLANCA) Study[J]. Clin Cardiol, 2018, 41(7):903-909. doi: 10.1002/clc.22939. [百度学术]
Qutrio Baloch Z, Raza SA, Pathak R, et al. Machine learning confirms nonlinear relationship between severity of peripheral arterial disease, functional limitation and symptom severity[J]. Diagnostics (Basel), 2020, 10(8):515. doi:10.3390/diagnostics10080515. [百度学术]
Jones G, Parr J, Nithiarasu P, et al. Machine learning for detection of stenoses and aneurysms: application in a physiologically realistic virtual patient database[J]. Biomech Model Mechanobiol, 2021, 20(6):2097-2146. doi:10.1007/s10237-021-01497-7. [百度学术]
Perez S, Thandra S, Mellah I, et al. Machine learning in vascular medicine: optimizing clinical strategies for peripheral artery disease[J]. Curr Cardiovasc Risk Rep, 2024, 18(12):187-195. doi:10.1007/s12170-024-00752-7. [百度学术]
Ross EG, Jung K, Dudley JT, et al. Predicting Future Cardiovascular Events in Patients With Peripheral Artery Disease Using Electronic Health Record Data[J]. Circ Cardiovasc Qual Outcomes, 2019, 12(3):e004741. doi: 10.1161/CIRCOUTCOMES.118.004741. [百度学术]
Berger JS, Haskell L, Ting W, et al. Evaluation of machine learning methodology for the prediction of healthcare resource utilization and healthcare costs in patients with critical limb ischemia-is preventive and personalized approach on the horizon?[J]. EPMA J, 2020, 11(1):53-64. doi: 10.1007/s13167-019-00196-9. [百度学术]
Li B, Nassereldine R, Zamzam A, et al. Development and evaluation of a prediction model for peripheral artery disease-related major adverse limb events using novel biomarker data[J]. J Vasc Surg, 2024, 80(2):490-497. doi: 10.1016/j.jvs.2024.03.450. [百度学术]
Li B, Eisenberg N, Beaton D, et al. Using machine learning to predict outcomes following suprainguinal bypass[J]. J Vasc Surg, 2024, 79(3):593-608. doi: 10.1016/j.jvs.2023.09.037. [百度学术]
Li B, Eisenberg N, Beaton D, et al. Using machine learning (XGBoost) to predict outcomes after infrainguinal bypass for peripheral artery disease[J]. Ann Surg, 2023, 279(4):705-713. doi: 10.1097/SLA.0000000000006181. [百度学术]
Li B, Aljabri B, Verma R, et al. Predicting outcomes following lower extremity endovascular revascularization using machine learning[J]. J Am Heart Assoc, 2024, 13(9):e033194. doi:10.1161/JAHA.123.033194. [百度学术]
Li B, Warren BE, Eisenberg N, et al. Machine learning to predict outcomes of endovascular intervention for patients with PAD[J]. JAMA Netw Open, 2024, 7(3):e242350. doi:10.1001/jamanetworkopen.2024.2350. [百度学术]
Yurtkuran A, Tok M, Emel E. A clinical decision support system for femoral peripheral arterial disease treatment[J]. Comput Math Methods Med, 2013, 2013:898041. doi:10.1155/2013/898041. [百度学术]
Amato ACM, Dos Santos RV, Saucedo DZ, et al. Machine learning in prediction of individual patient readmissions for elective carotid endarterectomy, aortofemoral bypass/aortic aneurysm repair, and femoral-distal arterial bypass[J]. SAGE Open Med, 2020, 8:2050312120909057. doi:10.1177/2050312120909057. [百度学术]
Lareyre F, Behrendt CA, Chaudhuri A, et al. Applications of artificial intelligence for patients with peripheral artery disease[J]. J Vasc Surg, 2023, 77(2):650-658. doi: 10.1016/j.jvs.2022.07.160. [百度学术]
Wang F, Casalino LP, Khullar D. Deep learning in medicine-promise, progress, and challenges[J]. JAMA Intern Med, 2019, 179(3):293-294. doi:10.1001/jamainternmed.2018.7117. [百度学术]
Janvier MA, Destrempes F, Soulez G, et al. Validation of a new 3D-US imaging robotic system to detect and quantify lower limb arterial stenoses[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2007, 2007:339-342. doi:10.1109/IEMBS.2007.4352293. [百度学术]
Nelson TR. Three-dimensional imaging[J]. Ultrasound Med Biol, 2000, 26:S35-S38. doi:10.1016/s0301-5629(00)00159-9. [百度学术]
Janvier MA, Soulez G, Allard L, et al. Validation of 3D reconstructions of a mimicked femoral artery with an ultrasound imaging robotic system[J]. Med Phys, 2010, 37(7):3868-3879. doi:10.1118/1.3447721. [百度学术]
Janvier MA, Merouche S, Allard L, et al. A 3-D ultrasound imaging robotic system to detect and quantify lower limb arterial stenoses: in vivo feasibility[J]. Ultrasound Med Biol, 2014, 40(1):232-243. doi: 10.1016/j.ultrasmedbio.2013.08.010. [百度学术]
Merouche S, Allard L, Montagnon E, et al. A Robotic Ultrasound Scanner for Automatic Vessel Tracking and Three-Dimensional Reconstruction of B-Mode Images[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2016, 63(1):35-46. doi: 10.1109/TUFFC.2015.2499084. [百度学术]
Allen J, Murray A. Development of a neural network screening aid for diagnosing lower limb peripheral vascular disease from photoelectric plethysmography pulse waveforms[J]. Physiol Meas, 1993, 14(1):13-22. doi:10.1088/0967-3334/14/1/003. [百度学术]
Allen J, Murray A. Prospective assessment of an artificial neural network for the detection of peripheral vascular disease from lower limb pulse waveforms[J]. Physiol Meas, 1995, 16(1):29-38. doi:10.1088/0967-3334/16/1/003. [百度学术]
Allen J, Murray A. Comparison of three arterial pulse waveform classification techniques[J]. J Med Eng Technol, 1996, 20(3):109-114. doi:10.3109/03091909609008388. [百度学术]
Kim S, Hahn JO, Youn BD. Detection and severity assessment of peripheral occlusive artery disease via deep learning analysis of arterial pulse waveforms: proof-of-concept and potential challenges[J]. Front Bioeng Biotechnol, 2020, 8:720. doi:10.3389/fbioe.2020.00720. [百度学术]
Luo X, Ara L, Ding HR, et al. Computational methods to automate the initial interpretation of lower extremity arterial Doppler and duplex carotid ultrasound studies[J]. J Vasc Surg, 2021, 74(3):988-996. doi:10.1016/j.jvs.2021.02.050. [百度学术]
Allen J, Liu HP, Iqbal S, et al. Deep learning-based photoplethysmography classification for peripheral arterial disease detection: a proof-of-concept study[J]. Physiol Meas, 2021, 42(5). doi: 10.1088/1361-6579/abf9f3. [百度学术]
Dai L, Zhou Q, Zhou H, et al. Deep learning-based classification of lower extremity arterial stenosis in computed tomography angiography[J]. Eur J Radiol, 2021, 136:109528. doi: 10.1016/j.ejrad.2021.109528. [百度学术]
Mistelbauer G, Morar A, Schernthaner R, et al. Semi-automatic vessel detection for challenging cases of peripheral arterial disease[J]. Comput Biol Med, 2021, 133:104344. doi:10.1016/j.compbiomed.2021.104344. [百度学术]
Kampaktsis PN, Emfietzoglou M, Al Shehhi A, et al. Artificial intelligence in atherosclerotic disease: applications and trends[J]. Front Cardiovasc Med, 2023, 9:949454. doi:10.3389/fcvm.2022.949454. [百度学术]