摘要
胆道损伤可分为医源性和非医源性两大类,其中非医源性胆道损伤包括免疫性、感染性、血管性及缺血性、遗传性、特发性和肿瘤性损伤等。损伤后的胆管上皮会经历炎症修复、上皮再生修复、纤维修复等一系列紧密关联的病理过程,并通过自分泌和旁分泌机制与炎性细胞和间质细胞相互作用,协同调控修复过程,以维持胆道的结构与功能完整性。若缺乏有效干预,胆道损伤可导致胆汁漏、胆道狭窄,甚至进展为肝硬化,严重影响患者生活质量。目前胆道损伤的治疗方式不再局限于传统外科手术,还包括免疫调节、胆汁酸调节和肠道微生态调节等非手术治疗。随着医学技术的发展,基因治疗、干细胞/类器官技术以及经内镜逆行性胰胆管造影术/组织工程支架等新型治疗方式逐渐受到关注,并有望成为未来胆道损伤的有效治疗选择。本综述重点阐述胆道损伤的病因、修复过程中的病理机制,并梳理现有及潜在的治疗手段,为未来胆道损伤的研究和诊疗提供参考。
胆道系统在消化和胆汁运输中发挥着至关重要的作用,胆管上皮细胞作为胆道系统的主要细胞类型,起到吸收、分泌以及调节胆汁的作
非手术治疗主要通过免疫调节、胆汁酸调节和肠道微生态调节等,缓解胆管炎症、减慢纤维化进展。胆道系统重建或肝移植(liver transplantation,LT)是胆道损伤的主要手术治疗方式,但存在术后修复效果不确定、并发症及肝源稀缺等问题仍未能有效解决。随着胆道损伤机制的深入研究,基因治疗、干细胞/类器官技术及内镜逆行性胰胆管造影术(ERCP)/组织工程支架等新型治疗方式在胆道损伤修复领域备受关注,展现出巨大的应用潜力。本文主要总结了胆道损伤的常见病因、病理修复机制及治疗方法(

图1 胆道损伤病因、修复过程及新型治疗方式
Figure 1 Etiology, repair process, and novel treatment approaches of bile tract injuries
胆道损伤的原因包括医源性和非医源性(免疫性损伤、感染性损伤、血管及缺血性损伤、遗传性损伤、特发性损伤和肿瘤性损伤)。以上因素均可导致胆汁流出道梗阻及胆汁淤积,从而加重胆道损伤并引发一系列病理反应。
医源性胆道损伤主要由手术和药物引起,其中腹腔镜下胆囊切除术(laparoscopic cholecystectomy,LC)是最常见(发生率为0.1%~0.6%)的损伤原
原发性胆汁性胆管炎(primary biliary cholangitis,PBC)、原发性硬化性胆管炎(primary sclerosing cholangitis,PSC)以及IgG4相关性胆管炎均为免疫介导的胆道损伤性疾病,但它们在病理特征和免疫损伤机制上存在差异。PBC是一种肉芽肿性炎症,以T细胞介导的小叶间胆管破坏为特征,期间伴随自然杀伤细胞和自然杀伤T细胞活化,进一步加重胆管细胞的凋亡和损
胆道感染性损伤由细菌、寄生虫和病毒等多种病原体介导,涉及复杂的病理机制。细菌感染通常源于肠道,当细菌侵入胆道时,抗原呈递细胞识别并呈递细菌抗原,触发促炎因子的释放,进而激活炎症反
胆道缺血性损伤可由多种因素引起,包括术中血管夹闭及损伤、药物或介入止血操作导致的动脉阻塞、获得性免疫缺陷综合征和休克等疾病引起的血供不足。胆道的血液供应依赖于肝固有动脉及其分支形成的胆管周围血管丛,该血管丛不仅调控胆管细胞功能,还与胆道疾病的发生密切相关。LT术后胆道损伤主要与缺血-再灌注损伤和肝动脉血栓形成相关。其中肝动脉血栓形成可导致胆管周围血管丛供血不足,最终导致胆道上皮再生障
Alagille综合征和囊性纤维化(cystic fibrosis,CF)是由遗传因素引起的胆道损伤性疾病。Alagille综合征的病理特征为肝内小叶间胆管减少,其发病机制与Jagged1或Notch2基因突变密切相
特发性胆道损伤中以胆道闭锁(biliary atresia,BA)最具代表性,其特征为胆道进行性、炎症性纤维硬化,是新生儿胆汁淤积的主要病因。研
各类型胆道损伤均能导致一定程度的胆道梗阻及胆汁淤积,并通过多种机制加重胆道损伤和纤维化,最终引起胆汁淤积性肝病。胆汁酸作为主要的促纤维化因子,可通过多种机制诱导胆道纤维
胆道系统分为肝内和肝外两部分,两者在组织胚胎来源和分化上存在显著差异。肝内胆管细胞由靠近门静脉及其周围间充质的成肝细胞(hepatoblasts)分化而来,这一过程受到Notch和TGF-β信号通路的调控,而肝外胆管细胞则直接来源于内胚层。胆道损伤后通常经历上皮再生修复、炎性修复及纤维修复三个病理阶段。这一系列过程涉及胆管上皮细胞的自分泌和旁分泌调控机制,通过生长因子(如TGF和TNF)、细胞因子(如IL-6)、神经递质(如Ach)以及激素(如促胰液素和性激素)等多种分子的协同作用,在不同修复阶段发挥关键作
胆管反应是一种适应性修复反应,是胆道系统在受到损伤后的反应性增殖和修复过程。任何类型胆道损伤后均存在四种机制以维持胆道上皮完整:⑴ 胆管上皮增殖;⑵ 肝细胞转分化;⑶ 肝祖细胞分化;⑷ 胆道干/祖细胞分化。这些机制共同构成了胆管反应的核心。在正常情况下,大多数胆道上皮细胞处于有分裂能力的G0期。当胆道上皮受到轻度损伤时,受损细胞通过释放细胞因子促使邻近的正常胆管上皮细胞增殖以完成修复;胆道上皮慢性损伤时,肝细胞可通过转分化为胆管细胞促进修复,这一过程受到Notch、TGF-β和Wnt等信号通路的调
胆道上皮受损后随即触发局部炎症反应,同时启动组织修复。但在免疫性胆道损伤中,炎症反应的失调及炎性细胞的异常激活成为直接介导胆道损伤的关键因素。在非免疫性胆道损伤的炎性修复阶段,胆管上皮细胞与各种炎性细胞被激活,活化的胆管上皮细胞通过自分泌和旁分泌机制调节局部免疫环境,积极参与胆道损伤免疫反应。中性粒细胞和单核细胞是胆道损伤后最先被募集的炎性细胞,在促炎和组织修复过程中起关键作
任何类型的慢性胆道损伤均能引发病理性修复反应,表现为ECM的过度沉积和异常分布,最终导致纤维化。这一过程受到多种细胞与信号通路的共同调控。其中,活化的胆管上皮细胞通过募集炎性细胞和间质细胞[特别是HSC],并与其发生相互串扰,协调纤维化的启动与进展。此外,肠道菌群的紊乱可破坏胆道上皮,诱发慢性炎症并进一步促进胆道纤维
不同类型胆道损伤在治疗上侧重点各异,根据病因和病理机制进行针对性治疗,不仅有助于提高修复效率,还契合当今个体化治疗的医疗实践理念。目前,胆道损伤的治疗方法涵盖非手术治疗、手术治疗以及新兴的前沿治疗策略,为胆道损伤患者提供了多样化的治疗手段。
非手术治疗主要通过免疫调节、胆汁酸调节和肠道微生态调节等手段,缓解胆管炎症、抑制纤维化进程,并改善胆汁淤积所引发的继发性胆道损伤。
免疫调节在缓解胆道损伤炎症中发挥重要作用。针对免疫性胆管损伤,Stoelinga
胆汁淤积是胆道损伤后常见的继发性病理过程,调节胆汁酸水平是其重要治疗策略。UDCA不仅可降低胆汁毒性,还能稳定细胞膜并抑制炎症反应。通过联合激活FXR或PPAR受体可进一步增强UDCA疗效,其中FXR和PPAR受体的激活可通过抑制CYP7A1表达来减少胆汁淤积损
肠道微生态调节通过调整肠肝轴,减少胆汁酸代谢产物对胆道的损伤。Allegretti
胆道损伤的外科治疗包括减少医源性胆道损伤事件的发生以及损伤后的胆道重建,其中减少胆道损伤的发生是预防医源性胆道损伤的关键。LC作为导致医源性胆道损伤的主要原因,通过选择合适手术时机和应用辅助显像手段可以最大程度地降低LC相关胆道损伤的发生。研
医源性胆管损伤后的手术方式有肝空肠吻合术(hepaticojejunostomy,HJ)、肝切除以及LT等。其中,HJ是目前治疗医源性胆管损伤的首选方法,尤其适用于长期胆道狭窄伴胆管扩张的情况,术后胆道长期通畅率可达80%~90
LT是治疗终末期肝病的最终手段,适用于急慢性肝功能衰竭、肝硬化以及肝脏恶性肿瘤等患者。同时LT也可用于治疗医源性胆管损伤,尤其是损伤后继发胆汁性肝硬化的病例。有研
目前基因治疗、干细胞/类器官以及ERCP/组织工程胆道支架疗法等新型技术在胆道损伤修复领域备受关注,展现出巨大的应用潜力和发展前景。
基因编辑技术在治疗基因突变引发的胆道损伤疾病中展现了巨大潜力,Abinesh
干细胞和类器官技术为细胞/组织再生提供了广阔的应用前景。干细胞不仅具备分化为特定细胞的能力,还具有抗炎、免疫抑制、血管生成和抗凋亡等多重功能。有研究证明源于成人或围产期组织的间充质干细胞(mesenchymal stem cells,MSC)在胆道损伤修复方面具有广阔的应用前景。MSC一方面能分化为实质细胞减轻胆管损伤及纤维化,另一方面还能通过分泌细胞外囊泡传递生物活性分子,调节炎症并促进组织再
ERCP作为胆道微创治疗的核心技术,在胆道损伤的诊断、治疗以及并发症的处理方面发挥着重要作用。近年来,新型递送系统和支架材料的发展进一步提升了ERCP在胆道损伤中的疗效。胆道损伤及并发症的影像学诊断方法主要包括超声和CT等,然而,ERCP由于其优良的胆道树结构显示功能及诊断和治疗微小胆道损伤的能力越来越受到重
ERCP联合支架置入是临床上广泛应用的治疗胆道损伤的方法。相较于传统胆道支架存在的狭窄复发率高、炎症反应严重等问题,组织工程支架凭借优异的生物相容性和组织再生能力,为改善治疗效果提供了更多可能。Lee
胆管损伤修复涉及上皮再生修复、炎性修复以及纤维性修复等一系列病理过程,由胆管上皮细胞、炎细胞、间质细胞及多种细胞因子共同调控,以维持胆管的完整性。然而,各类型胆道损伤机制复杂且侧重点不同,目前研究尚未充分揭示不同损伤类型在修复过程中的特异性机制,未来仍需深入探索。此外,尽管胆道损伤在临床中较为常见,但不同类型胆道损伤的发病占比仍缺乏大规模、权威的流行病学数据支持,有待进一步系统性研究完善。
随着生物医学技术的快速发展,除常规的内科治疗和手术外,一些新型治疗方法为胆道修复提供了新的视角。例如,基因治疗为遗传性胆道损伤疾病提供潜在治愈手段;干细胞/类器官技术在胆管细胞替代和组织再生领域具有广阔的应用前景;ERCP/组织工程支架联合新技术进一步拓展了ERCP的适应证,并显著提升了胆道修复的精准性和效率。然而,这些新型治疗方法仍面临诸多挑战,如基因治疗的脱靶效应、递送效率和长期安全性问题仍需优化;干细胞及类器官移植技术面临体内定向分化的控制、免疫排斥及长期存活率等挑战;ERCP结合支架治疗仍需解决植入后生物整合、降解可控性以及术后并发症等问
针对上述问题,未来研究可聚焦于以下几个方面:⑴ 利用单细胞测序和多组学分析深入解析胆管损伤的分子机制,探索不同损伤类型下胆管上皮修复的关键分子通路,以优化个体化治疗策略;⑵ 探索多种治疗手段的联合应用,如当前研究的组织工程支架与干细胞技术结合,以提高修复效率并优化长期疗效;⑶ 充分发挥人工智能优势,优化手术操作、辅助胆道损伤治疗决策,并结合多模态数据分析,提升胆道损伤的精准诊疗与个体化治疗水平。未来,新型治疗方式的协同发展,有望加速临床转化,推动个体化胆道损伤修复策略的优化,为患者提供更精准、安全且高效的治疗方案。
作者贡献声明
彭柏铭负责对本文进行选题、构思、撰写以及修改;向杨负责本文选题、指导、修改以及资金支持;张剑权对本文指导、辅助修改以及资金支持。
利益冲突
所有作者均声明不存在利益冲突。
参考文献
Banales JM, Huebert RC, Karlsen T, et al. Cholangiocyte pathobiology[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(5):269-281. doi:10.1038/s41575-019-0125-y. [百度学术]
张潇予, 向杨, 张剑权. 胆道纤维化狭窄的机制及其治疗研究进展[J]. 中国普通外科杂志, 2024, 33(8):1320-1329. doi:10.7659/j.issn.1005-6947.2024.08.013. [百度学术]
Zhang XY, Xiang Y, Zhang JQ, et al. Research progress on the mechanism and treatment of fibrotic biliary stricture[J]. China Journal of General Surgery, 2024, 33(8):1320-1329. doi:10.7659/j.issn.1005-6947.2024.08.013. [百度学术]
Jensen K, Marzioni M, Munshi K, et al. Autocrine regulation of biliary pathology by activated cholangiocytes[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(5):G473-G483. doi:10.1152/ajpgi.00482.2011. [百度学术]
Labib PL, Goodchild G, Pereira SP. Molecular pathogenesis of cholangiocarcinoma[J]. BMC Cancer, 2019, 19(1):185. doi:10.1186/s12885-019-5391-0. [百度学术]
Cohen JT, Charpentier KP, Beard RE. An update on iatrogenic biliary injuries[J]. Surg Clin N Am, 2019, 99(2):283-299. doi:10.1016/j.suc.2018.11.006. [百度学术]
Nakano R, Shiomi H, Fujiwara A, et al. Clinical characteristics of ICI-related pancreatitis and cholangitis including radiographic and endoscopic findings[J]. Healthcare (Basel), 2022, 10(5):763. doi:10.3390/healthcare10050763. [百度学术]
Gulamhusein AF, Hirschfield GM. Primary biliary cholangitis: pathogenesis and therapeutic opportunities[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(2):93-110. doi:10.1038/s41575-019-0226-7. [百度学术]
Sabino J, Vieira-Silva S, Machiels K, et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD[J]. Gut, 2016, 65(10):1681-1689. doi:10.1136/gutjnl-2015-311004. [百度学术]
Bernard JK, Marakovits C, Smith LG, et al. Mast cell and innate immune cell communication in cholestatic liver disease[J]. Semin Liver Dis, 2023, 43(2):226-233. doi:10.1055/a-2104-9034. [百度学术]
Deutschmann K, Reich M, Klindt C, et al. Bile acid receptors in the biliary tree: TGR5 in physiology and disease[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B):1319-1325. doi:10.1016/j.bbadis.2017.08.021. [百度学术]
Maehara T, Koga R, Nakamura S. Immune dysregulation in immunoglobulin G4-related disease[J]. Jpn Dent Sci Rev, 2023, 59:1-7. doi:10.1016/j.jdsr.2022.12.002. [百度学术]
Jeffery HC, van Wilgenburg B, Kurioka A, et al. Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1[J]. J Hepatol, 2016, 64(5):1118-1127. doi:10.1016/j.jhep.2015.12.017. [百度学术]
Isaacs-Ten A, Echeandia M, Moreno-Gonzalez M, et al. Intestinal microbiome-macrophage crosstalk contributes to cholestatic liver disease by promoting intestinal permeability in mice[J]. Hepatology, 2020, 72(6):2090-2108. doi:10.1002/hep.31228. [百度学术]
Sivanand A, Talati D, Kalariya Y, et al. Associations of liver fluke infection and cholangiocarcinoma: a scoping review[J]. Cureus, 2023, 15(10):e46400. doi:10.7759/cureus.46400. [百度学术]
Leonhardt S, Jürgensen C, Frohme J, et al. Hepatobiliary long-term consequences of COVID-19: dramatically increased rate of secondary sclerosing cholangitis in critically ill COVID-19 patients[J]. Hepatol Int, 2023, 17(6):1610-1625. doi:10.1007/s12072-023-10521-0. [百度学术]
de Jong IEM, Matton APM, van Praagh JB, et al. Peribiliary glands are key in regeneration of the human biliary epithelium after severe bile duct injury[J]. Hepatology, 2019, 69(4):1719-1734. doi:10.1002/hep.30365. [百度学术]
Bai Y, Shi JH, Liu Q, et al. Charged multivesicular body protein 2B ameliorates biliary injury in the liver from donation after cardiac death rats via autophagy with air-oxygenated normothermic machine perfusion[J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869(5):166686. doi:10.1016/j.bbadis.2023.166686. [百度学术]
Martins P, Verdelho Machado M. Secondary sclerosing cholangitis in critically ill patients: an underdiagnosed entity[J]. GE Port J Gastroenterol, 2020, 27(2):103-114. doi:10.1159/000501405. [百度学术]
Mašek J, Andersson ER. Jagged-mediated development and disease: mechanistic insights and therapeutic implications for alagille syndrome[J]. Curr Opin Cell Biol, 2024, 86:102302. doi:10.1016/j.ceb.2023.102302. [百度学术]
Kasper VL, Assis DN. Pathophysiology of cystic fibrosis liver disease[J]. Pediatr Pulmonol, 2024, 59(Suppl 1):S98-S106. doi:10.1002/ppul.26869. [百度学术]
Wen J, Zhou Y, Wang J, et al. Retraction Note: Interactions between Th1 cells and Tregs affect regulation of hepatic fibrosis in biliary atresia through the IFN-γ/STAT1 pathway[J]. Cell Death Differ, 2020, 27(7):2295. doi:10.1038/s41418-019-0428-0. [百度学术]
Hu S, Molina L, Tao J, et al. NOTCH-YAP1/TEAD-DNMT1 axis drives hepatocyte reprogramming into intrahepatic cholangiocarcinoma[J]. Gastroenterology, 2022, 163(2):449-465. doi:10.1053/j.gastro.2022.05.007. [百度学术]
Gruttadauria S, Barbera F, Pagano D, et al. Liver transplantation for unresectable intrahepatic cholangiocarcinoma: the role of sequencing genetic profiling[J]. Cancers (Basel), 2021, 13(23):6049. doi:10.3390/cancers13236049. [百度学术]
Bruneau A, Hundertmark J, Guillot A, et al. Molecular and cellular mediators of the gut-liver axis in the progression of liver diseases[J]. Front Med (Lausanne), 2021, 8:725390. doi:10.3389/fmed.2021.725390. [百度学术]
De Muynck K, Vanderborght B, De Ponti FF, et al. Kupffer cells contested as early drivers in the pathogenesis of primary sclerosing cholangitis[J]. Am J Pathol, 2023, 193(4):366-379. doi:10.1016/j.ajpath.2022.12.008. [百度学术]
Zhou B, Lin W, Long Y, et al. Notch signaling pathway: architecture, disease, and therapeutics[J]. Signal Transduct Target Ther, 2022, 7(1):95. doi:10.1038/s41392-022-00934-y. [百度学术]
Rim EY, Clevers H, Nusse R. The Wnt pathway: from signaling mechanisms to synthetic modulators[J]. Annu Rev Biochem, 2022, 91:571-598. doi:10.1146/annurev-biochem-040320-103615. [百度学术]
Wu B, Shentu X, Nan H, et al. A spatiotemporal atlas of cholestatic injury and repair in mice[J]. Nat Genet, 2024, 56(5):938-952. doi:10.1038/s41588-024-01687-w. [百度学术]
Kurial SNT. Defining the mechanisms driving maturation and morphogenesis of the hepatocyte-derived biliary tree[DB/OL]. Available at:https://webofscience.clarivate.cn/wos/alldb/full-record/GRANTS:14982011. [百度学术]
Van Haele M, Roskams T. Hepatic progenitor cells: an update[J]. Gastroenterol Clin North Am, 2017, 46(2):409-420. doi:10.1016/j.gtc.2017.01.011. [百度学术]
Carpino G, Nevi L, Overi D, et al. Peribiliary gland niche participates in biliary tree regeneration in mouse and in human primary sclerosing cholangitis[J]. Hepatology, 2020, 71(3):972-989. doi:10.1002/hep.30871. [百度学术]
Lan T, Qian S, Tang C, et al. Role of immune cells in biliary repair[J]. Front Immunol, 2022, 13:866040. doi:10.3389/fimmu.2022.866040. [百度学术]
Li T, Chiang JYL. Nuclear receptors in bile acid metabolism[J]. Drug Metab Rev, 2013, 45(1):145-155. doi:10.3109/03602532.2012.740048. [百度学术]
Mohamad Zaki NH, Shiota J, Calder AN, et al. C-X-C motif chemokine ligand 1 induced by Hedgehog signaling promotes mouse extrahepatic bile duct repair after acute injury[J]. Hepatology, 2022, 76(4):936-950. doi:10.1002/hep.32492. [百度学术]
Molina L, Nejak-Bowen K, Monga SP. Role of YAP1 signaling in biliary development, repair, and disease[J]. Semin Liver Dis, 2022, 42(1):17-33. doi:10.1055/s-0041-1742277. [百度学术]
Zigmond E, Zecher BF, Bartels AL, et al. Bile duct colonization with Enterococcus sp. associates with disease progression in primary sclerosing cholangitis[J]. Clin Gastroenterol Hepatol, 2023, 21(5):1223-1232. doi:10.1016/j.cgh.2022.09.006. [百度学术]
Cannito S, Milani C, Cappon A, et al. Fibroinflammatory liver injuries as preneoplastic condition in cholangiopathies[J]. Int J Mol Sci, 2018, 19(12):3875. doi:10.3390/ijms19123875. [百度学术]
Wu C, Zhang W, Luo Y, et al. Zebrafish ppp1r21 mutant as a model for the study of primary biliary cholangitis[J]. J Genet Genomics, 2023, 50(12):1004-1013. doi:10.1016/j.jgg.2023.05.013. [百度学术]
Stoelinga AEC, Biewenga M, Drenth JPH, et al. Diagnostic criteria and long-term outcomes in AIH-PBC variant syndrome under combination therapy[J]. JHEP Rep, 2024, 6(7):101088. doi:10.1016/j.jhepr.2024.101088. [百度学术]
Ma D, Liu X, Li J, et al. ELMO1 regulates macrophage directed migration and attenuates inflammation via NF-κB signaling pathway in primary biliary cholangitis[J]. Dig Liver Dis, 2024, 56(11):1897-1905. doi:10.1016/j.dld.2024.05.012. [百度学术]
Jongthawin J, Techasen A, Loilome W, et al. Anti-inflammatory agents suppress the prostaglandin E2 production and migration ability of cholangiocarcinoma cell lines[J]. Asian Pac J Cancer Prev, 2012, 13(Supp l):47-51. DOI: 10.7314/APJCP.2012.13.KKSuppl.47 [百度学术]
Mayo MJ. Mechanisms and molecules: What are the treatment targets for primary biliary cholangitis?[J]. Hepatology, 2022, 76(2):518-531. doi:10.1002/hep.32405. [百度学术]
Di Giorgio C, Urbani G, Marchianò S, et al. Liver GPBAR1 associates with immune dysfunction in primary sclerosing cholangitis and its activation attenuates cholestasis in Abcb4-/- mice[J]. Liver Int, 2025, 45(2):e16235. doi:10.1111/liv.16235. [百度学术]
Allegretti JR, Kassam Z, Carrellas M, et al. Fecal microbiota transplantation in patients with primary sclerosing cholangitis: a pilot clinical trial[J]. Am J Gastroenterol, 2019, 114(7):1071-1079. doi:10.14309/ajg.0000000000000115. [百度学术]
Bogatic D, Bryant RV, Lynch KD, et al. Systematic review: microbial manipulation as therapy for primary sclerosing cholangitis[J]. Aliment Pharmacol Ther, 2023, 57(1):23-36. doi:10.1111/apt.17251. [百度学术]
俞帆, 金丽明, 刘杰, 等. 吲哚菁绿荧光导航在日间腹腔镜胆囊切除术中的临床应用价值[J]. 中国普通外科杂志, 2024, 33(2):236-243. doi:10.7659/j.issn.1005-6947.2024.02.010. [百度学术]
Yu F, Jin LM, Liu J, et al. Clinical application value of indocyanine green fluorescence navigation in day-surgery of laparoscopic cholecystectomy[J]. China Journal of General Surgery, 2024, 33(2):236-243. doi:10.7659/j.issn.1005-6947.2024.02.010. [百度学术]
Marichez A, Adam JP, Laurent C, et al. Hepaticojejunostomy for bile duct injury: state of the art[J]. Langenbecks Arch Surg, 2023, 408(1):107. doi:10.1007/s00423-023-02818-3. [百度学术]
Furtado R, Yoshino O, Muralidharan V, et al. Hepatectomy after bile duct injury: a systematic review[J]. HPB (Oxford), 2022, 24(2):161-168. doi:10.1016/j.hpb.2021.09.012. [百度学术]
Cai Q, Wu X. Ultrasound-guided percutaneous transhepatic biliary drainage for distal biliary malignant obstructive jaundice[J]. Sci Rep, 2024, 14(1):12481. doi:10.1038/s41598-024-63424-x. [百度学术]
Spiers HVM, Lam S, Machairas NA, et al. Liver transplantation for iatrogenic bile duct injury: a systematic review[J]. HPB (Oxford), 2023, 25(12):1475-1481. doi:10.1016/j.hpb.2023.08.004. [百度学术]
Vilatobá M, Chávez-Villa M, Figueroa-Méndez R, et al. Liver transplantation as definitive treatment of post-cholecystectomy bile duct injury: experience in a high-volume repair center[J]. Ann Surg, 2022, 275(5):e729-e732. doi:10.1097/SLA.0000000000005245. [百度学术]
van Rijn R, Schurink IJ, de Vries Y, et al. Hypothermic machine perfusion in liver transplantation-A randomized trial[J]. N Engl J Med, 2021, 384(15):1391-1401. doi:10.1056/NEJMoa2031532. [百度学术]
Abinesh RS, Madhav R, Trideva Sastri K, et al. Precision medicine advances in cystic fibrosis: Exploring genetic pathways for targeted therapies[J]. Life Sci, 2024, 358:123186. doi:10.1016/j.lfs.2024.123186. [百度学术]
Song D, Zheng YW, Hemmi Y, et al. Generation of human induced pluripotent stem cell lines carrying homozygous JAG1 deletions[J]. Stem Cell Res, 2021, 57:102588. doi:10.1016/j.scr.2021.102588. [百度学术]
Larrey D, Delire B, Meunier L, et al. Drug-induced liver injury related to gene therapy: a new challenge to be managed[J]. Liver Int, 2024, 44(12):3121-3137. doi:10.1111/liv.16065. [百度学术]
Gondaliya P, Ali Sayyed A, Yan IK, et al. Targeting PD-L1 in cholangiocarcinoma using nanovesicle-based immunotherapy[J]. Mol Ther, 2024, 32(8):2762-2777. doi:10.1016/j.ymthe.2024.06.006. [百度学术]
Chen W, Lin F, Feng X, et al. MSC-derived exosomes attenuate hepatic fibrosis in primary sclerosing cholangitis through inhibition of Th17 differentiation[J]. Asian J Pharm Sci, 2024, 19(1):100889. doi: 10.1016/j.ajps.2024.100889. [百度学术]
Sampaziotis F, Muraro D, Tysoe OC, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver[J]. Science, 2021, 371(6531):839-846. doi:10.1126/science.aaz6964. [百度学术]
Kreiner P, Eggenhofer E, Schneider L, et al. Extrahepatic bile duct organoids as a model to study ischemia/reperfusion injury during liver transplantation[J]. Transpl Int, 2024, 37:13212. doi:10.3389/ti.2024.13212. [百度学术]
Chen S, Li P, Wang Y, et al. Rotavirus infection and cytopathogenesis in human biliary organoids potentially recapitulate biliary atresia development[J]. mBio, 2020, 11(4):e01968-20. doi:10.1128/mBio.01968-20. [百度学术]
Maddu K, Polireddy K, Hsu D, et al. Do not get stumped: multimodality imaging findings of early and late post-cholecystectomy complications[J]. Emerg Radiol, 2023, 30(3):351-362. doi:10.1007/s10140-023-02131-y. [百度学术]
Jang SI, Do MY, Lee SY, et al. Magnetic compression anastomosis for the treatment of complete biliary obstruction after cholecystectomy[J]. Gastrointest Endosc, 2024, 100(6):1053-1060. doi:10.1016/j.gie.2024.05.009. [百度学术]
Carannante F, Mazzotta E, Miacci V, et al. Identification and management of subvesical bile duct leakage after laparoscopic cholecystectomy: a systematic review[J]. Asian J Surg, 2023, 46(10):4161-4168. doi:10.1016/j.asjsur.2023.04.031. [百度学术]
Kesar V, Abel WF, Bapaye J, et al. EUS-directed transduodenal ERCP in concomitant gastric outlet and biliary obstruction[J]. Gastrointest Endosc, 2024:S0016-5107(24)03776-3. doi:10.1016/j.gie.2024.12.003. [百度学术]
Jiang H, Ye LS, Yuan XL, et al. Artificial intelligence in pancreaticobiliary endoscopy: current applications and future directions[J]. J Dig Dis, 2024, 25(9/10):564-572. doi:10.1111/1751-2980.13324. [百度学术]
Lee JR, Yang SW, Kwon CI, et al. Anti-fibrotic and anti-stricture effects of biodegradable biliary stents braided with dexamethasone-impregnated sheath/core structured monofilaments[J]. Acta Biomater, 2024, 178:137-146. doi:10.1016/j.actbio.2024.02.037. [百度学术]
Nagakawa Y, Fujita S, Yunoki S, et al. Characterization and preliminary in vivo evaluation of a self-expandable hydrogel stent with anisotropic swelling behavior and endoscopic deliverability for use in biliary drainage[J]. J Mater Chem B, 2022, 10(23):4375-4385. doi:10.1039/d2tb00104g. [百度学术]
Li H, Yin Y, Xiang Y, et al. A novel 3D printing PCL/GelMA scaffold containing USPIO for MRI-guided bile duct repair[J]. Biomed Mater, 2020, 15(4):045004. doi:10.1088/1748-605X/ab797a. [百度学术]
Xiang Y, Wang WJ, Gao YH, et al. Production and characterization of an integrated multi-layer 3D printed PLGA/GelMA scaffold aimed for bile duct restoration and detection[J]. Front Bioeng Biotechnol, 2020, 8:971. doi:10.3389/fbioe.2020.00971. [百度学术]
Mazari-Arrighi E, Ayollo D, Farhat W, et al. Construction of functional biliary epithelial branched networks with predefined geometry using digital light stereolithography[J]. Biomaterials, 2021, 279:121207. doi:10.1016/j.biomaterials.2021.121207. [百度学术]