

 doi:10.7659/j.issn.1005-6947.2024.05.013

 http://dx.doi.org/10.7659/j.issn.1005-6947.2024.05.013

・基础研究・

IncRNA FOXP4-AS1 通过 miR-507 调控甲状腺乳头状癌 细胞生物学行为的作用机制研究

朱雪音1,马宁1,2、陈松1、高庆军3、赵代伟1,4,5

(1. 贵州医科大学临床医学院,贵州贵阳550000; 2. 贵州省人民医院 血管甲状腺外科,贵州贵阳550499; 3. 贵州医科 大学附属医院 甲状腺外科,贵州 贵阳 550000;4.贵州省第二人民医院 甲状腺外科,贵州 贵阳 550004;5.贵黔国际 总医院 乳腺甲状腺科,贵州 贵阳 550000)

摘 要 背景与目的: 长链非编码 RNA(lncRNA)可通过结合 mircoRNA(miRNA)来间接调控下游 mRNA 的转 录及降解,从而调控肿瘤发生与发展。IncRNA FOXP4-AS1 是近年来发现的一种新的肿瘤相关生物标志 物,在不同的肿瘤中发挥着不同的调控作用,笔者前期研究发现,FOXP4-AS1在甲状腺乳头状癌 (PTC)中呈低表达,发挥抑癌作用。此外,笔者通过数据库预测miR-507可与FOXP4-AS1互补结合。 因此,本研究探讨FOXP4-AS1通过调控miR-507及其下游靶mRNA抑制PTC细胞的生长的作用与机制。 方法:通过TCGA数据库分析miR-507在甲状腺癌(TC)中的表达水平及其在TC中的临床意义。qRT-PCR 检测 PTC 细胞系(TPC-1、K1)和正常甲状腺滤泡上皮细胞(Nthy-ori3-1)中 miR-507 的表达水平,以及 过表达及敲低 FOXP4-AS1 后检测 miR-507 表达水平的变化。用双荧光素酶报告基因实验验证 FOXP4-AS1 与miR-507靶向关系。分别在FOXP4-AS1过表达及敲低稳转株上转染miR-507的模拟物、抑制物,并分 别用CCK-8实验、克隆形成实验、Transwell实验、划痕愈合实验以及流式细胞术检测细胞功能的变化。 用生物信息学方法分析miR-507下游靶点并用gRT-PCR验证。 结果: TCGA 数据库分析结果显示, miR-507 在 TC 中高表达, 且其表达水平 TC 患者与临床病理分期、 T分期、腺外浸润等临床病理特征有关(均P<0.05)。qRT-PCR结果显示,与Nthy-ori3-1细胞比较,miR-507

在两种 PTC 细胞中呈高表达,且过表达和敲低 FOXP4-AS1 后,两种 PTC 细胞中 miR-507 的表达水平随之 反向改变(均P<0.05)。双荧光素酶报告基因实验结果显示,FOXP4-AS1与miR-507靶向结合,并抑制 miR-507的表达。细胞功能实验及功能回复实验显示, FOXP4-AS1过表达后, PTC细胞的增殖活力、迁 移能力和抗凋亡能力明显减弱,同时加入miR-507的模拟物后,PTC细胞以上功能回复(均P<0.05); 敲低 FOXP4-AS1 后, PTC 细胞的增殖活力、迁移能力和抗凋亡能力明显升高, 同时加入 miR-507 的抑制 物后, PTC 细胞以上功能回复(均 P<0.05)。数据库预测与 GO、KEGG 富集分析结果显示, miR-507 下游 可能涉及CAMK4, qRT-PCR 验证结果显示, CAMK4的表达水平随 FOXP4-AS1 表达水平的上调、下调呈 同向改变,且其表达水平随miR-507模拟物和抑制物的加入而反向改变(均P<0.05)。

结论: FOXP4-AS1 可以靶向结合 miR-507,并可能通过海绵作用抑制 miR-507 表达水平调控 PTC 细胞的 增殖、迁移及细胞凋亡。CAMK4可能是FOXP4-AS1/miR-507通路发挥抑癌作用的下游靶点之一。

关键词

甲状腺肿瘤; RNA, 长链非编码; 微RNAs; 细胞增殖; 细胞凋亡 中图分类号: R736.1

基金项目:国家自然科学基金资助项目(81860478)。

收稿日期: 2023-09-12; 修订日期: 2024-04-17。

作者简介:朱雪音,贵州医科大学临床医学院硕士研究生,主要从事甲状腺癌基础方面的研究。

通信作者: 赵代伟, Email: zhaodw@hotmail.com

Mechanism of lncRNA FOXP4-AS1 regulating the biological behavior of papillary thyroid carcinoma cells via miR-507

ZHU Xueyin¹, MA Ning^{1,2}, CHEN Song¹, GAO Qingjun³, ZHAO Daiwei^{1,4,5}

(1. Clinical Medical College of Guizhou Medical University, Guiyang 550000, China; 2. Department of Vascular and Thyroid Surgery, Guizhou Provincial People's Hospital, Guiyang 550499, China; 3. Department of Thyroid Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China; 4. Department of Thyroid Surgery, the Second People's Hospital of Guizhou Province, Guiyang 550004, China; 5. Department of Breast and Thyroid Surgery, Guiqian International General Hospital, Guiyang 550000, China)

Abstract Background and Aims: Long non-coding RNAs (lncRNAs) can indirectly regulate the transcription and degradation of downstream mRNAs by binding to microRNAs (miRNAs), thereby regulating the occurrence and development of tumors. LncRNA FOXP4-AS1 is a recently discovered tumor-related biomarker, playing different regulatory roles in different tumors. Our previous study found that FOXP4-AS1 is downregulated in papillary thyroid carcinoma (PTC) and is a tumor suppressor. In addition, bioinformatics analysis predicted that miR-507 could complementarily bind to FOXP4-AS1. Therefore, this study was conducted to explore the role and mechanism of FOXP4-AS1 in inhibiting the growth of PTC cells by regulating miR-507 and its downstream target mRNA.

Methods: The expression levels of miR-507 in thyroid cancer (TC) and its clinical significance were analyzed using the TCGA database. The expression levels of miR-507 in PTC cell lines (TPC-1, K1) and normal thyroid follicular epithelial cells (Nthy-ori3-1) were detected by qRT-PCR and the changes in miR-507 expression levels after overexpression and knockdown of FOXP4-AS1 were measured. The dual-luciferase reporter gene assay was used to verify the targeting relationship between FOXP4-AS1 and miR-507. miR-507 mimic and inhibitor were transfected into stable cell lines overexpressing or knockdown of FOXP4-AS1, and changes in cell function were detected by CCK-8 assay, colony formation assay, Transwell assay, scratch healing assay, and flow cytometry. Bioinformatics analysis was used to predict the downstream targets of miR-507, and qRT-PCR was used for validation.

Results: Analysis of the TCGA database showed that miR-507 was highly expressed in TC, and its expression level was associated with clinical pathological features such as clinical stage, T stage, and extrathyroidal infiltration (all P<0.05). qRT-PCR results showed that compared with Nthy-ori3-1 cells, miR-507 was highly expressed in both PTC cell lines, and the expression levels of miR-507 in both PTC cells changed inversely after overexpression and knockdown of FOXP4-AS1 (all P<0.05). The results of the dual-luciferase reporter gene assay showed that FOXP4-AS1 targeted and inhibited the expression of miR-507. Cell function experiments and functional recovery experiments showed that after overexpression of FOXP4-AS1, the proliferation, migration, and anti-apoptotic ability of PTC cells were significantly weakened, and these functions were restored after the addition of miR-507 mimic (all P< 0.05); knockdown of FOXP4-AS1 in PTC cells resulted in a significant increase in proliferation, migration, and anti-apoptotic ability, and these functions were restored after the addition of the miR-507 inhibitor (all P<0.05). Bioinformatics prediction and GO, KEGG enrichment analysis results showed that miR-507 downstream may involve CAMK4. qRT-PCR validation results showed that the expression level of CAMK4 changed in the same direction as the expression level of FOXP4-AS1, and its expression level changed inversely with the addition of miR-507 mimic (all P<0.05).

Conclusion: FOXP4-AS1 can target miR-507, and may regulate the proliferation, migration, and

	apoptosis of PTC cells by inhibiting the expression level of miR-507 through a sponge mechanism.
	CAMK4 may be one of the downstream targets of the FOXP4-AS1/miR-507 pathway in exerting its
	anticancer effects.
Key words	Thyroid Neoplasms; RNA, Long Noncoding; MicroRNAs; Cell proliferation; Apoptosis
	CLC number: R736.1

中国普通外科杂志

甲状腺癌(thyroid cancer, TC)是最常见的内 分泌恶性肿瘤,我国TC发病率增长迅速,国家癌 症中心数据显示 2022年TC发病率上升至所有恶性 肿瘤中第三位^[1]。甲状腺乳头状癌(papillary thyroid cancer, PTC)是TC中最常见的类型,约占 85%~90%。多数PTC病程缓慢,表现出高度惰性, 预后较好,但仍有5%~20%的PTC侵袭性和病死率 较通常PTC较显著,预后相对较差^[2-3]。因此,深 入探索PTC发病发展的分子机制,对PTC患者的诊 断、治疗、长期管理及预后判断具有重要意义。

长链非编码 RNA (long non-coding RNA, lncRNA)在调控肿瘤的发生发展中起着重要作用。 lncRNA FOXP4-AS1是近年来出现的一种新的肿瘤 相关生物标志物,在不同的肿瘤中作用不同^[4-11], 本课题组对其开展了研究^[12-14],结果发现: FOXP4-AS1在PTC中呈低表达,且其低表达是PTC 区域淋巴结转移的独立危险因素,进一步发现 FOXP4-AS1的亚细胞定位在细胞质中,因而推测 FOXP4-AS1在PTC中可能通过两种方式发挥肿瘤抑 制作用:作为mircoRNA(miRNA)分子海绵或调 节其结合蛋白的稳定性。但目前关于FOXP4-AS1的 研究中尚未有PTC中FOXP4-AS1作为miRNA分子海 绵参与的ceRNA通路的文献报道。为此,笔者前 期使用miRDB数据库(https://mirdb.org)预测发现 miR-507可能是FOXP4-AS1的调控靶miRNA(图1)。 因此,本研究对FOXP4-AS1可能靶向海绵的miRNA 并进行实验验证,同时探索该ceRNA通路对PTC细 胞功能的影响。

第33卷

图 1 FOXP-AS1 与 miR-507 的结合靶点预测 Figure 1 Prediction of the binding sites between FOXP4-AS1 and miR-507

1 材料与方法

1.1 材料

1.1.1 miR-507 在 TC 与 泛 癌 中 的 表 达 分 析 从 TCGA 数 据 库 (https://portal.gdc.cancer.gov) 下载 并 整 理 肿 瘤 的 miRNA-seq 数 据 并 提 取 RPM 格 式 的 数 据,

分析 miR-507 在 TC 及泛癌中的表达水平及其在 TC 中的临床意义,使用 ggplot2 包可视化结果。 1.1.2 主要试剂及耗材 人 PTC 细胞 TPC-1 (武汉 普诺赛生命科技有限公司,中国),人 PTC 细胞 K1 及人正常甲状腺滤泡上皮细胞 Nthy-ori3-1 (上海市

长海医院); RPMI 1640 培养基、DMEM 高糖培养

基、(Gibco,美国);细胞培养皿、细胞培养板、 离心管、Transwell小室、细胞冻存管(广州洁特生 物过滤股份有限公司,中国);胎牛血清、无血清 冻存液、Annexin V-APC/PI 荧光双染细胞凋亡检测 试剂盒 (武汉普诺赛生命科技有限公司,中国); 过表达慢病毒、敲低慢病毒,病毒转染试剂(上 海吉凯基因医学科技股份有限公司,中国); hsa-miR-507 模拟物及其对照、hsa-miR-507 抑制物 及其对照、FOXP4-AS1引物、GAPDH引物[生工生 物工程(上海)股份有限公司,中国]; Lipo8000[™] 转染试剂(上海碧云天生物技术有限公司,中 国); TRIzol (Ambion, 美国); nanodrop 2000 (Thermo Fisher,美国); 逆转录试剂盒、实时定量 PCR 扩增预溶液[翌圣生物科技(上海)股份有限 公司,中国]; CCK-8试剂 (MedChemExpress,美 国); miR-507引物、U6引物、锁核苷酸 miRNA 检 测试剂盒 (QIAGEN,美国); 4% 多聚甲醛 (北京 雷根生物技术有限公司,中国); 0.1%结晶紫水溶 液(北京索莱宝科技有限公司,中国)。

1.2 方法

1.2.1 细胞培养 人 PTC 细胞 TPC-1 和人正常甲状 腺滤泡上皮细胞 Nthy-ori3-1 培养在 RPMI 1640 完全 培养基(含 10% 胎牛血清、0.1 mg/mL 链霉素和 100 U/mL 青霉素)中,人 PTC 细胞 K1、人胚肾上 皮细胞 293T 培养在 DMEM 完全培养基(含 10% 胎 牛血清、0.1 mg/mL 链霉素和 100 U/mL 青霉素)中, 置于恒温培养箱中(37 ℃、5% CO₂)。

1.2.2 FOXP4-AS1 过表达及敲低稳转株的构建 将 PTC 细胞(TPC-1、K1 细胞)分别转染 FOXP4-AS1 过表达慢病毒载体(FOXP4-AS1 组)、过表达对照 空载病毒(阴性对照组,Ctrl 组)、FOXP4-AS1 敲低 慢病毒载体1号(shFOXP4-AS1 组#1)、FOXP4-AS1 敲低慢病毒载体2号(shFOXP4-AS1 组#2)、敲低对 照空载病毒(敲低阴性对照组,shCtrl 组)。慢病 毒的构建由上海吉凯基因医学科技股份有限公司 完成。6孔板中种板密度至 30%~50% 开始转染, 将配制好的病毒感染液(MOI=50,病毒滴度= 1×10⁸ TU/mL)加入6孔板中,置于细胞培养箱中 培养12~16h后,更换为完全培养基,继续培养72h。 培养72h后用嘌呤霉素(2µg/mL)对细胞进行筛 选建立稳转株,使用倒置荧光显微镜确认转染效 果,qRT-PCR检测过表达及敲低效率。

1.2.3 细胞功能回复实验的分组及转染 将 PTC 细 胞(TPC-1、K1细胞)FOXP4-AS1过表达稳转株分 别转染分 miR-507 的模拟物(miR-507 mimic 组)和 模拟物阴性对照序列(模拟物阴性对照组, mNC组); 将 PTC 细胞(TPC-1、K1 细胞) FOXP4-AS1 敲低稳 转株分别转染 miR-507 的抑制物(miR-507 inhibitor 组)和抑制物阴性对照序列(抑制物阴性对照组, iNC组)。miR-507的模拟物及抑制物和对应的阴性 对照由生工生物工程(上海)股份有限公司合成, 其核苷酸序列为 miR-507 mimic: UUU UGC ACC UUU UGG AGU GAA (正向序列); mNC: UUG UAC UAC ACA AAA GUA CUG (正向序列); miR-507 inhibitor: (mU) (mU) (mC) (mA) (mC) (mU) (mC) (mC) (mA) (mA) (mA) (mA) (mG) (mG)(mU) (mG) (mC) (mA) (mA) (mA) (mA); iNC: CAG UAC UUU UGU GUA GUA CAA。6孔板中 种板密度至30%~50%开始转染,将配制好的 miRNA 转染液(miRNA mimic 工作浓度 50 nmol/L, miRNA inhibitor 工作浓度100 nmol/L)加入6孔板中, 继续培养24~48h后,本实验中采用检测细胞功能变 化检测 miRNA mimic/inhibitor 的作用效果。

1.2.4 RNA 提取及 qRT-PCR 取处于对数生长期 的细胞,接种于6孔板中培养,待细胞汇合度达 90% 左右,倒去培养基,用PBS洗涤1次,加入 1 mL TRIzol试剂提取 RNA。Nanodrop 2000 测定 RNA的浓度和纯度。取1μg总RNA,对于mRNA, 使用逆转录试剂盒进行逆转录并使用实时定量 PCR 扩增预溶液进行 qRT-PCR反应;对于miRNA, 使用锁核苷酸 miRNA 检测试剂盒进行逆转录和 qRT-PCR反应,均采用2^{-ΔΔCi}法计算相对表达量。 FOXP4-AS1、CAMK4的表达以 GAPDH 为内参,二者 引物均由生工公司设计合成(表1);hsa-miR-507 的表达以 U6 为内参,二者引物均由 QIAGEN 设计 合成,序列不公布。以上实验均重复3次。

表1 FOXP4-AS1引物及内参引物序列

Table 1 The primer sequences of FOXP4-AS1 and internal reference

基因名称	正向引物	反向引物
FOXP4-AS1	GTG AGC TTC TGG GTT CGA CA	ATT GAG GGT TAG GGC AGC AC
GAPDH	CAC CCA CTC CTC CAC CTT TG	CCA CCA CCC TGT TGC TGT AG
CAMK4	AAT CAT ATG CTC AAA GTC ACG GTG CCC	TAC ATC TCG AGT AGT ACT GGC AGG ATC

注:miR-507及U6引物由美国QIAGEN公司设计合成,不公开序列

Note: The miR-507 and U6 primers were designed and synthesized by QIAGEN, Inc. and the sequences are not disclosed

1.2.5 双荧光素酶报告基因实验 人胚肾上皮细胞 293T 分为六组: (FOXP4-AS1) -NC+miR507-NC 组; (FOXP4-AS1) -NC+miR507 组: (FOXP4-AS1) -WT+ miR507-NC 组; (FOXP4-AS1) -WT+miR507 组; (FOXP4-AS1) -MT+miR507-NC 组; (FOXP4-AS1) -MT+miR507组;每组细胞接种于24孔板中,培养 18~24 h 后细胞汇合度达 60% 以上。按 3'UTR 质粒 μg, miRNA 质粒 0.4 μg, Renilla 质粒 0.02 μg 的比 例共转染每组细胞,细胞转染48h后进行luciferase 检测。吸去24孔板中培养基,加入300 µL的 Passive Lysis Buffer 1×, 放至4℃冰箱反应20 min待 细胞充分裂解,用振板机震荡 3~5 min (不要太剧 烈),混合均匀。上机检测前,提前将Stop & Glo[®] Buffer 放于室温下溶解、平衡,将 Stop & Glo[®] Substrate 50×加入到 Stop & Glo[®] Buffer 中, 使其充 分溶解,稀释成1×Reagent。吸取细胞裂解液40 µL 于 Lockwell maxisorp 检测板中, 加入 20 µL Luciferase Assay Reagent, 震荡混匀后立即使用酶标 仪检测萤火虫荧光酶荧光值。检测萤火虫荧光酶 荧光值后,每孔中加入 20 µL Stop & Glo[®] Reagent, 震荡混匀后静置3 min 后使用酶标仪检测海肾荧光 酶荧光值。

1.2.6 细胞增殖实验(CCK-8法) 细胞以2×10³/孔 的密度接种于96孔板,在37℃、5%CO₂的恒温培 养箱中培养。转染1、2、3、4 d 后,将10 μL CCK-8试剂加入每个孔中,在37℃下孵育2 h。使 用酶标仪分别检测1、2、3、4 d 的 450 nm 处的吸 光度。以上实验均重复3次。

1.2.7 细胞克隆形成实验 制备好细胞悬液后,以 1600个/孔的细胞密度接种于6孔板中,每组设3个 平行复孔,置于37℃培养箱中培养。2周左右肉 眼可观察到细胞克隆团,弃去培养基,以PBS洗涤 3次,4%多聚甲醛固定细胞30 min后倒去废液加 入0.1%结晶紫水溶液染色30 min,以缓慢清水洗 去余色,晾干后扫描拍照,计数肉眼可见的细胞 克隆团。

1.2.8 细胞划痕愈合实验 预先在6孔板背面用记 号笔划3条平行的标记线,制备好细胞悬液后,细 胞计数并调整细胞浓度使细胞接种后18~24 h 汇合 度能达到100%,每组设3个平行复孔,置于37 ℃ 培养箱中培养。24 h 后用200 μL 枪头垂直于6孔 板,并垂直于标记线划线,划线与标记线交点即 为观察点,以PBS洗3次洗涤去划下的细胞,用无 血清的 RPMI 1640或 DMEM 培养基正常换液,培养 0、24、48 h 时显微镜对观察点拍照。

1.2.9 细胞迁移实验 用Transwell小室检测细胞的迁移能力。转染后的细胞消化,用无血清的 RPMI 1640或DMEM培养基重悬,计数后将细胞悬 液浓度调整至10 000个细胞/mL,向Transwell上室 中添加调整后的细胞悬液 200 μL,下室加入含 10%血清的 RPMI 1640或DMEM培养基 600 μL。小 室置于细胞恒温培养箱中培养 24 h后,以PBS 轻洗 1次,4%多聚甲醛固定细胞 30 min 后倒去废液加 入 0.1%结晶紫水溶液染色 30 min,用PBS 洗去余 色,并用棉签轻轻除去上室膜上的细胞,晾干后 显微镜拍照并计数。

1.2.10 流式细胞术检测细胞凋亡 收集细胞培养 基并制备好细胞悬液后,用PBS缓冲液洗涤细胞 1次(300 r/min离心 5 min),PBS重悬并计数,调 整细胞浓度为(1~5)×10⁵,再离心收集细胞,加 入提前配制好的100 μL稀释的1×Annexin V Binding Buffer(用去离子水稀释)重悬细胞,向细 胞悬液中分别加入2.5 μL Annexin V-APC染色液和 2.5 μL PI染色液。室温避光染色15~30 min后,经 流式细胞仪分析细胞凋亡。以上实验均重复3次。

1.2.11 FOXP4-AS1/miR-507 通路分析 使用 miRDB 数据库 (https://mirdb.org)、TargetScan 数据库 (www.targetscan.org)、mirDIP 数据 (http://ophid.utoronto.ca/mirDIP) 和 miRWalk 数据库 (http://129.206.7.150) 预测 hsa-miR-507 可能的下游靶点,将结果制成韦

800

恩图。并将结果进行基因本体(GO)富集分析和 京都基因和基因组百科全书(KEGG)途径富集分 析以探索 FOXP4-AS1/miR-507通路的关键靶点。

1.3 统计学处理

所有数据统计分析均采用 GraphPad Prism 9.0 或 SPSS 28.0 软件进行。计量资料若满足正态性用 均数±标准差(x̄±s)描述,若不满足正态性用 中位数(四分位间距)[M(IQR)]描述。计量资 料,若方差齐则使用独立样本t检验(两组间)和 one-way ANOVA分析(多组间);若方差不齐则采 用 Welch's ANOVA检验。多重比较均使用 Dunnett T3法。P<0.05为差异有统计学意义。

2 结 果

2.1 miR-507在TC与泛癌中的表达

TCGA 数据库的分析结果显示:与正常样本比较,TC组织中miR-507的表达水平更高(0.205±0.089 vs. 0.454±0.294, P<0.051)(图 2A);miR-507在肾嫌色细胞癌(KICH)、肾透明细胞癌(KIRC)、乳头状肾细胞癌(KIRP)、嗜铬细胞瘤和副神经节瘤(PCPG)等癌症中呈低表达,与TC相似,miR-507的表达水平在肺鳞状细胞癌(LUSC)中相较于非癌组织呈高表达(均P<0.05)(图 2B)。

图 2 TCGA数据库分析 miR-507 的表达 A: miR-507 在 TC 中的表达; B: miR-507 在泛癌中的表达
 Figure 2 Analysis of miR-507 expression in TCGA database A: Expression of miR-507 in TC; B: Expression of miR-507 in pan-cancer

2.2 miR-507在TC中的临床意义

根据 TCGA 数据库中 miR-507 表达水平的中位 数,将所有患者根据 miR-507 表达水平分组为低和 高组,比较两组间临床病理特征的差异。与miR-507 高表达组相比,miR-507 低表达组无进展间隔期 (PFI)延长(P<0.05)(图 3A);使用 pROC 包进行 对数据进行 ROC 分析,结果用 ggplot2 进行可视化, 结果显示 miR-507 在诊断实验中也有一定的准确性 (图 3B)。miR-507 的表达水平与 TC 患者的临床病 理分期、T 分期、腺外浸润、年龄有关(均 P< 0.05)(图 3C-I)。

2.3 miR-507在TC细胞系中的表达

通过 qRT-PCR 检测人 PTC 细胞系(TPC-1、K1 细胞)和人正常甲状腺滤泡上皮细胞(Nthy-ori3-1 细胞)中 miR-507 的表达情况。结果显示,人 PTC 细胞系 TPC-1、K1 中 miR-507 的表达水平明显高于 人正常甲状腺滤泡上皮细胞 Nthy-ori3-1,差异均有 统 计 学 意 义(59.078±6.825 vs. 1.000±0.134; 149.759±8.999 vs. 1.000±0.134, 均 P<0.001)(图4)。

图3 miR-507 的表达在 TC 中的临床意义 A: miR-507 低表达与高表达患者的 PFI 曲线; B: miR-507 表达与 TC 关系的 ROC 曲线; C-I: miR-507 表达与临床病理分期、T分期、N分期、M分期、腺外浸润、性别、年龄的关系

Figure 3 Clinical significance of miR-507 expression in TC A: PFI curves of miR-507 low expression compared to high expression patients; B: ROC curve of miR-507 expression related to TC; C–I: Relationship of miR-507 expression with clinicopathologic stage, T stage, N stage, M stage, extrathyroidal infiltration, gender, and age

图4 miR-507在PTC细胞及正常甲状腺上皮细胞中的表达 水平比较

2.4 TPC-1、K1细胞过表达及敲低转染效率检测

倒置荧光显微镜观察过表达及敲低慢病毒转染后,发绿色荧光的TPC-1、K1细胞均占80%以上。使用qRT-PCR检测各稳转株中FOXP4-AS1表达水平,结果显示转染FOXP4-AS1过表达慢病毒(FOXP4-AS1组)后,TPC-1、K1细胞的FOXP4-AS1表达水平明显升高,与Ctrl组比较,差异有统计学意义(3201.144±399.869 vs. 1.000±0.204;503.147±23.291 vs. 1.000±0.171,均P<0.001)(图5);转染FOXP4-AS1 敲低慢病毒(shFOXP4-AS1#1组和shFOXP4-AS1#2组)后,TPC-1、K1细胞的FOXP4-AS1#表达水平明显降低,与shCtrl组比较,差异有统计

学意义(0.508±0.025 vs. 1.000±0.017, 0.285±0.025 vs. 1.000±0.017; 0.519±0.022 vs. 1.000±0.081,
0.260±0.021 vs. 1.000±0.081,均 P<0.01)(图 6)。
且 shFOXP4-AS1#2 组敲低水平更低,因此,后续实验均使用 shFOXP4-AS1#2 稳转株进行。

2.5 TPC-1、K1 细胞过表达及敲低 FOXP4-AS1 后 miR-507 表达水平的变化

在不同 FOXP4-AS1 表达水平下检测 miR-507 的 表达水平,结果显示,TPC-1、K1 细胞过表达 FOXP4-AS1 后,其miR-507 表达水平明显低于 Ctrl 组 (0.273±0.055 vs. 1.000±0.073; 0.130±0.021 vs. 1.000±0.063,均 P<0.05)。TPC-1、K1 细胞敲低 FOXP4-AS1 后,其miR-507 表达水平明显高于 shCtrl组,差异均有统计学意义(41.086±1.108 vs. 1.000±0.040; 19.424±0.320 vs. 1.000±0.047,均 P< 0.05)(图7)。

2.6 双荧光素酶报告基因实验验证 FOXP4-AS1 靶 向结合 miR-507

双荧光素酶报告基因实验结果显示:相比 (FOXP4-AS1) -NC及(FOXP4-AS1) -MT两组, (FOXP4-AS1) -WT组过表达miR-507后可以明显降 低FOXP4-AS1的3'UTR的荧光素酶活性(0.922± 0.043 vs. 0.314±0.004; 0.916±0.040 vs. 0.314±0.004, 均 P<0.01)(图 8)。这表明miR-507是FOXP4-AS1 直接靶向结合的miRNA。

图5 过表达效率分析 A: TPC-1和K1细胞转染过表达FOXP4-AS1慢病毒后的明场及荧光图; B: TPC-1和K1细胞过表达 FOXP4-AS1效率

Figure 5 Overexpression efficiency analysis A: Bright-field and fluorescent images of TPC-1 and K1 cells transfected with overexpressed FOXP4-AS1 lentivirus; B: Efficiency of FOXP4-AS1 overexpression in TPC-1 and K1 cells

图6 敲低效率分析 A: TPC-1和K1细胞转染敲低FOXP4-AS1慢病毒后的明场及荧光图; B: TPC-1和K1细胞敲低 FOXP4-AS1效率

Figure 6 Knockdown efficiency analysis A: Bright-field and fluorescent images of TPC-1 and K1 cells transfected with FOXP4-AS1 knockdown lentivirus; B: Efficiency of FOXP4-AS1 knockdown in TPC-1 and K1 cells

图7 TPC-1和K1细胞过表达及敲低FOXP4-AS1后miR-507表达水平的变化

图8 FOXP4-AS1与miR-507的双荧光素酶报告基因实验 结果

Figure 8 Results of the dual-luciferase reporter gene assay for the interaction between FOXP4-AS1 and miR-507

2.7 FOXP4-AS1 通过miR-507 影响 PTC 细胞增殖

细胞增殖实验、细胞克隆形成实验均显示, K1及TPC-1过表达FOXP4-AS1后细胞增殖能力减弱,向过表达组及对照组总转染miR-507的模拟物后,细胞被抑制的增殖能力得到回复;相反,K1 及TPC-1 敲低FOXP4-AS1后细胞增殖能力增强,敲 低组和对照组中转染miR-507的抑制物后,细胞被 促进的增殖能力再次被抑制。差异均有统计学意 义(均P<0.05)(图9-10)。

FOXP4-AS1可能通过miR-507影响PTC细胞 迁移

Transwell 迁移实验、划痕愈合实验均显示, K1及TPC-1细胞过表达FOXP4-AS1后细胞迁移能力 被抑制,向过表达组及对照组中转染miR-507的模 拟物后,细胞被抑制的迁移能力再次增强;相反, K1及TPC-1 敲低FOXP4-AS1后细胞迁移能力增强, 向敲低组和对照组中转染miR-507的抑制物后,细 胞的迁移能力重新被抑制,细胞迁移率降低。差 异均有统计学意义(均P<0.05)(图11-12)。

2.9 FOXP4-AS1通过miR-507影响PTC细胞凋亡

流式细胞术检测各组细胞凋亡结果显示,在

K1及TPC-1过表达FOXP4-AS1稳转株中的细胞凋亡 增加,向过表达组及对照组转染miR-507的模拟物 后,增加的细胞凋亡率再次降低;相反,在K1及 TPC-1 敲低FOXP4-AS1稳转株中的细胞凋亡减少, 向敲低组及对照组转染miR-507的抑制物后细胞凋 亡再次增加。差异均有统计学意义(均P<0.05) (图13)。

2.10 FOXP4-AS1/miR-507通路的下游靶点预测

将满足标准的预测的miR-507可能的下游靶基因取交集,同时满足四个数据库的预测基因有101个(图14A)。将取得的miR-507下游靶基因交集进行GO、KEGG富集分析,结果显示,miR-507的101个靶基因功能主要是富集在转录调节复合体、突触膜和突触前膜,在癌症的转录失调、Hippo信号通路、Wnt信号通路、Apelin信号通路上也有一定功能(图14B)。

2.11 FOXP4-AS1 通过 miR-507 影响 PTC 细胞中 CAMK4 的转录水平

鉴于 CAMK4 显示被富集到 Apelin 信号通路, 该信号通路可进一步激活下游 PI3K/Akt、AMPK 和 MAPK 通路等, 且已有文献报道验证 CAMK4 是 miR-507的下游靶mRNA, 故分析 FOXP4-AS1 是否 能通过miR-507影响CAMK4的转录水平。qRT-PCR 检测结果显示, TPC-1、K1 细胞中敲低 FOXP4-AS1 后, CAMK4相对表达水平随之降低, 但加入miR-507 的抑制物后, CAMK4的相对表达水平再次升高 $(\text{TPC-1}; 0.318 \pm 0.044 \text{ vs. } 1.000 \pm 0.027, 0.318 \pm 0.044 \text{ vs. } 1.000 \pm 0.044 \text{ vs. } 1.000 \pm 0.027, 0.318 \pm 0.044 \text{ vs. } 1.000 \pm 0.027, 0.318 \pm 0.044 \text{ vs. } 1.000 \pm 0.027, 0.318 \pm 0.044 \text{ vs. } 1.000 \pm 0.027, 0.318 \pm 0.044 \text{ vs. } 1.000 \pm 0.027, 0.318 \pm 0.044 \text{ vs. } 1.000 \pm 0.027, 0.318 \pm 0.044 \text{ vs. } 1.000 \pm 0.027, 0.318 \pm 0.044 \text{ vs. } 1.000 \pm 0.044 \text{ vs. } 1.0000 \pm 0.044 \text{ vs. } 1.0000 \pm 0.044 \text{ vs. } 1.0$ $0.044 \ vs. \ 0.687 \pm 0.121$; K1: $0.860 \pm 0.037 \ vs. \ 1.000 \pm$ 与之相反, TPC-1、K1 细胞中过表达 FOXP4-AS1 后, CAMK4相对表达水平随之升高, 但加入miR-507 的模拟物后, CAMK4的相对表达水平再次降低 $(\text{TPC-1}; 2.831 \pm 0.030 \text{ vs.} 1.000 \pm 0.080, 2.831 \pm$ $0.030 \ vs. \ 2.032 \pm 0.078$; K1: $1.927 \pm 0.232 \ vs. \ 1.000 \pm$ 0.039, 1.927 ± 0.232 vs. 0.811 ± 0.132 , 均 P<0.05) (图15)。

Figure 9 CCK-8 assay to detect the proliferation ability of PTC cells

TPC-1

FOXP4-AS1+mNC组

FOXP4-AS1+mNC组

TPC-1

K1

nhibitor组 shFOXP4-AS1#2+iNC组

P<0.001

P<0.001

K1

P<0.01

FOXP4-AS1+miR-507 mimic 组

P<0.01

FOXP4-AS1+miR-507 mimie 组

P<0.001

shFOXP4-AS1#2+miR-507 inhibitor 组

P<0.001

shFOXP4-AS1#2+miR-507 inhibitor 组

P<0.01

图14 miR-507 靶基因预测 A:利用 Targetscan、miRDB、miRDIP和miRWalk数据库预测miR-507 靶基因的Venn图; B:GO、KEGG 富集分析预测miR-507可能参与的功能

Figure 14 Prediction of miR-507 target genes A: Venn diagram predicting miR-507 target genes using TargetScan, miRDB, miRDIP, and miRWalk databases; B: GO and KEGG enrichment analysis predicting the potential functions of miR-507

图 15 qRT-PCR验证 FOXP4-AS1 通过 miR-507影响 CAMK4 的转录水平 Figure 15 Validation of the effect of FOXP4-AS1 on CAMK4 transcription through miR-507 using qRT-PCR

3 讨 论

近年来,随着高清晰 B 超和细针穿刺活检技 术等技术的普及,PTC 的发病率逐年升高,且发病 有年轻化的趋势^[15-16]。因此,寻找 PTC 有效的分子 生物标志物和治疗靶点是仍是研究的重要方向 之一。 lncRNA 是肿瘤发生发展的重要调控因子, lncRNA 在肿瘤的发生发展中起着关键作用^[17],通 过多种方式促进或抑制肿瘤发生与进展^[18]。 LncRNA FOXP4-AS1 能与 miR-3130-3p^[19]、miR-423-5p^[20]、miR-136-5p^[21]、miR-3184-5p^[22]等 miRNA 靶向 结合通过 ceRNA 调控机制参与调控多种恶性肿瘤 的发生发展,可见 FOXP4-AS1 可通过 ceRNA 调控网 络发挥重要作用。

本研究在此基础上继续探索,通过生信分析 预测筛选得到 FOXP4-AS1 靶向 miR-507。TCGA 数据 库显示 miR-507 在 TC、肺鳞状细胞癌(LUSC)中 相较于非癌组织呈高表达,低miR-507表达水平可 延长 TC 患者的 PFI, 其表达水平不仅对诊断有一 定准确性也与TC患者的临床病理分期、T分期、 腺外浸润、年龄相关。因此,笔者使用 qRT-PCR 检测在miR-507在三种甲状腺细胞及FOXP4-AS1过 表达和敲低后各组细胞中的表达水平,同时通过 双荧光素酶报告基因实验研究 FOXP4-AS1 与 miR-507 的直接关系,与既往文献^[23-29]报道mi-507在癌症中 呈低表达并表现为抑癌作用不同,这提示miR-507 在 PTC 中可能发挥促癌作用。 gRT-PCR 结果显示, miR-507 表达水平与 FOXP4-AS1 表达水平改变方向 相反,这提示 FOXP4-AS1 可能负向调控 miR-507 的 表达水平。双荧光素酶报告基因实验验证二者的 关系,结果显示 FOXP4-AS1 可与 miR-507 直接靶向 结合,并抑制miR-507表达。

笔者进一步探究 FOXP4-AS1 通过调控miR-507 对 PTC 细胞生物学行为的影响,对此本研究使用 miR-507 的模拟物及抑制物对 FOXP4-AS1 过表达和 敲低后的 PTC 细胞进行相关细胞功能实验及细胞 功能回复实验。笔者发现miR-507 的模拟物及抑制 物能一定程度将 PTC 细胞的增殖、迁移、凋亡水 平回复至过表达及敲低 FOXP4-AS1 前,这也表明 FOXP4-AS1 可通过 miR-507 调控 PTC 细胞的增殖、 迁移及凋亡。参阅既往文献,miR-507 在非小细胞 肺癌^[30]、肝细胞癌^[31]、乳腺癌^[32]、胃癌^[33]中呈低表 达,并参与调节癌细胞的增殖、迁移与侵袭,其 调控癌细胞生长的作用与本研究中相反,可能是 疾病发生部位不同,miR-507 的功能也有所差异。

笔者进一步通过生信分析探索了miR-507的下游靶点,对结果进行GO、KEGG富集分析发现, miR-507的101个靶基因功能主要是富集在转录调 节复合体、突触膜和突触前膜,在癌症的转录失 调、Hippo信号通路、Apelin信号通路以及Wnt信 号通路上也有一定功能。其中Wnt信号通路的激活 能促进癌症发展^[34],Hippo信号通路其失调则会导 致肿瘤细胞的发生、侵袭、迁移、治疗耐药^[35], Apelin信号通路可进一步激活下游PI3K/Akt^[36]、 AMPK^[37]和MAPK通路^[38]等,这与细胞功能学实验 结果相一致。CAMK4富集于Apelin信号通路上,

有文献^[39]验证了CAMK4是miR-507的下游靶基因, 所以笔者在转录水平上对 FOXP4-AS1 通过 miR-507 调控 CAMK4 进行了初步的验证, qRT-PCR 结果显 示, CAMK4的表达水平随 FOXP4-AS1 表达水平的 上调、下调同向改变,并且其表达水平随 miR-507 模拟物和抑制物的加入而反向改变,提示 CAMK4 是 FOXP4-AS1/miR-507 通路的下游靶点之一。此 外,有研究^[40]表明,CAMK4在肝癌组织及细胞中 呈低表达,上调CAMK4表达可显著诱导肝癌细胞 凋亡并抑制其增殖,且CAMK4具有部分抗迁移作 用, Lin 等^[41]发现 CAMK4 是肝癌的重要调节因子, 并且有研究^[42]表明, CAMK4可通过与香草醛结合 来发挥抑制神经母细胞瘤细胞增殖的作用。这说 明CAMK4具有一定的抑癌作用, FOXP4-AS1可能 通过CAMK4来参与调控肿瘤细胞的增殖、迁移及 凋亡,且CAMK4可能是不错的药物靶蛋白^[43]。

综上所述, miR-507在PTC细胞中呈现高表达, 同时FOXP4-AS1能直接与miR-507结合。 FOXP4-AS1可通过结合miR-507作为miRNA的分子海绵负向调控miR-507的表达水平,从而发挥抑癌作用。FOXP4-AS1/miR-507通路在一定程度上调控 PTC细胞的增殖、迁移和凋亡。因此,FOXP4-AS1和miR-507有望成为PTC治疗中潜在的临床靶点。 CAMK4是FOXP4-AS1/miR-507通路下游靶点之一, 可能是FOXP4-AS1发挥抑癌作用的途径之一。

利益冲突:所有作者均声明不存在利益冲突。

作者贡献声明:朱雪音参与生信分析、qRT-PCR 实验、细胞功能实验并完成文章的撰写;马宁参与细 胞功能学实验与论著的修改;陈松参与细胞功能学实 验与论著的修改;高庆军参与论著的修改;赵代伟参 与论著选题与论著的修改。

参考文献

- 郑荣寿,陈茹,韩冰峰,等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3):221-231. doi:10.3760/cma.j. cn112152-20240119-00035.
 Zheng RS, Chen R, Han BF, et al. Cancer incidence and mortality in China, 2022[J]. Chinese Journal of Oncology, 2024, 46(3):221-231. doi:10.3760/cma.j.cn112152-20240119-00035.
- [2] Ambrosi F, Righi A, Ricci C, et al. Hobnail variant of papillary thyroid carcinoma: a literature review[J]. Endocr Pathol, 2017, 28

(4):293-301. doi:10.1007/s12022-017-9502-7.

- [3] Nath MC, Erickson LA. Aggressive variants of papillary thyroid carcinoma: hobnail, tall cell, columnar, and solid[J]. Adv Anat Pathol, 2018, 25(3):172–179. doi:10.1097/PAP.00000000000184.
- [4] Zhang GM, Wang YF, Han XY, et al. FOXP4-AS1 may be a potential prognostic biomarker in human cancers: a meta-analysis and bioinformatics analysis[J]. Front Oncol, 2022, 12:799265. doi: 10.3389/fonc.2022.799265.
- [5] Ye JF, Fu Y, Wang ZF, et al. Long non-coding RNA FOXP4-AS1 facilitates the biological functions of hepatocellular carcinoma cells via downregulating ZC3H12D by mediating H3K27me3 through recruitment of EZH2[J]. Cell Biol Toxicol, 2022, 38(6):1047–1062. doi:10.1007/s10565–021–09642–9.
- [6] Shu Q, Liu XL, Yang JS, et al. The clinical prognostic value of lncRNA FOXP4-AS1 in cancer patients: a meta-analysis and bioinformatics analysis based on TCGA datasets[J]. Medicine (Baltimore), 2022, 101(42): e31439. doi: 10.1097/ MD.000000000031439.
- [7] Liu LL, Zhao JY, Guo H, et al. Participation of long noncoding RNA FOXP4-AS1 in the development and progression of endometrioid carcinoma with epigenetically silencing DUSP5[J]. Cancer Biother Radiopharm, 2024. doi: 10.1089/cbr. 2023.0039.
 [Online ahead of print]
- [8] Zhao J, Yang T, Li L. LncRNA FOXP4-AS1 is involved in cervical cancer progression via regulating miR-136-5p/CBX4 axis[J]. Onco Targets Ther, 2020, 13:2347–2355. doi:10.2147/OTT.S241818.
- [9] Shi ZL, Zhou GQ, Guo J, et al. Identification of a prognostic colorectal cancer model including LncRNA FOXP4-AS1 and LncRNA BBOX1-AS1 based on bioinformatics analysis[J]. Cancer Biother Radiopharm, 2022, 37(10): 893–906. doi: 10.1089/ cbr.2020.4242.
- [10] Cheng Z, Jiang S, Tao R, et al. Activating transcription factor 3activated long noncoding RNA forkhead box P4-antisense RNA 1 aggravates colorectal cancer progression by regulating microRNA-423-5p/nucleus accumbens associated 1 axis[J]. Bioengineered, 2022, 13(2):2114–2129. doi:10.1080/21655979.2021.2023798.
- [11] Liu XG, Xu H, Chen M, et al. Identify potential clinical significance of long noncoding RNA forkhead box P4 antisense RNA 1 in patients with early stage pancreatic ductal adenocarcinoma[J]. Cancer Med, 2020, 9(6): 2062–2076. doi: 10.1002/cam4.2818.
- [12] 汤蕊,杨慧芳,高庆军,等.甲状腺乳头状癌长链非编码 RNA FoxP4-AS1表达与淋巴结转移的相关性研究[J].中国普外基础 与临床杂志,2021,28(5):566-570. doi: 10.7507/1007-9424.202101002.

Tang R, Yang HF, Gao QJ, et al. Expression of long non-coding RNA FoxP4-AS1 in papillary thyroid carcinoma and its relationship with lymph node metastasis[J]. Chinese Journal of Bases and Clinics in General Surgery, 2021, 28(5): 566-570. doi: 10.7507/1007-9424.202101002.

- [13] 杨惠芳, 汤蕊, 罗雪, 等. 甲状腺乳头状癌细胞中长链非编码 RNA FoxP4-AS1 的表达及其生物学功能[J]. 中国普通外科杂志, 2022, 31(5):619-630. doi:10.7659/j.issn.1005-6947.2022.05.007.
 Yang HF, Tang R, Luo X, et al. Expression of long non-coding RNA FoxP4-AS1 in papillary thyroid carcinoma cells and its biological function[J]. China Journal of General Surgery, 2022, 31 (5):619-630. doi:10.7659/j.issn.1005-6947.2022.05.007.
- [14] Luo X, Gao QJ, Zhou T, et al. FOXP4-AS1 inhibits papillary thyroid carcinoma proliferation and migration through the AKT signaling pathway[J]. Front Oncol, 2022, 12:900836. doi:10.3389/ fonc.2022.900836.
- [15] 马军杰, 王平. 经口入路腔镜甲状腺手术的现状及展望[J]. 中国 普通外科杂志, 2023, 32(5):640-647. doi:10.7659/j.issn.1005-6947.2023.05.002.

Ma JJ, Wang P. Current status and prospects of transoral endoscopic thyroid surgery[J]. China Journal of General Surgery, 2023, 32(5):640–647. doi:10.7659/j.issn.1005–6947.2023.05.002.

- [16] Boucai L, Zafereo M, Cabanillas ME. Thyroid cancer: a review[J]. JAMA, 2024, 331(5):425–435. doi:10.1001/jama.2023.26348.
- [17] Alharthi NS, Al-Zahrani MH, Hazazi A, et al. Exploring the lncRNA-VEGF axis: implications for cancer detection and therapy[J]. Pathol Res Pract, 2024, 253: 154998. doi: 10.1016/j. prp.2023.154998.
- [18] Bhattacharjee R, Prabhakar N, Kumar L, et al. Crosstalk between long noncoding RNA and microRNA in cancer[J]. Cell Oncol (Dordr), 2023, 46(4):885–908. doi:10.1007/s13402-023-00806-9.
- [19] Gu TT, Pan HF, Zhang F, et al. The FOXP4-AS1/miR-3130-3p/SP4 feedback loop is associated with prostate cancer[J]. Cell Mol Biol (Noisy-le-grand), 2022, 68(10): 161–166. doi: 10.14715/cmb/ 2022.68.10.24.
- [20] Tao HF, Shen JX, Hou ZW, et al. lncRNA FOXP4-AS1 predicts poor prognosis and accelerates the progression of mantle cell lymphoma through the miR-423-5p/NACC1 pathway[J]. Oncol Rep, 2021, 45(2):469–480. doi:10.3892/or.2020.7897.
- [21] Yan J, Zhou Q. LncRNA FOXP4-AS1 silencing inhibits metastasis and epithelial-mesenchymal transition in nasopharyngeal carcinoma via miR-136-5p/MAPK1[J]. Anticancer Drugs, 2023, 34 (10):1104–1111. doi:10.1097/CAD.000000000001510.
- [22] Li DB, Li ZH, YanFei W, et al. LncRNA FOXP4-AS promotes the progression of non-small cell lung cancer by regulating the miR-3184-5p/EIF5A axis[J]. J Tissue Eng Regen Med, 2022, 16(4):335– 345. doi:10.1002/term.3275.
- [23] Wei YP, Sun QQ, Zhao LD, et al. LncRNA UCA1-miR-507-FOXM1 axis is involved in cell proliferation, invasion and G0/G1 cell cycle arrest in melanoma[J]. Med Oncol, 2016, 33(8):88. doi: 10.1007/s12032-016-0804-2.

- [24] Wang SS, Li J, Yang XP. Long non-coding RNA LINC00525 promotes the stemness and chemoresistance of colorectal cancer by targeting miR-507/ELK3 axis[J]. Int J Stem Cells, 2019, 12(2):347– 359. doi:10.15283/ijsc19041.
- [25] Deng ZB, Tu QM, Hu GL, et al. Knockdown of circLRWD1 weakens DDP resistance via reduction of SIRT5 expression through releasing miR-507 in non-small cell lung cancer[J]. Anticancer Drugs, 2022, 33(9): 861–870. doi: 10.1097/ CAD.000000000001364.
- [26] Lv HL, Li ZL, Song YB. MicroRNA-507 represses the malignant behaviors of non-small cell lung cancer via targeting zinc finger Ebox binding homeobox 2[J]. Eur Rev Med Pharmacol Sci, 2019, 23 (22):9955–9964. doi:10.26355/eurrev_201911_19562.
- [27] Wang LH, Lin CY, Liu SC, et al. CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells[J]. Oncotarget, 2016, 7(24): 36896–36908. doi:10.18632/oncotarget.9213.
- [28] Zhou R, Xu JY, Wang LW, et al. LncRNA PRRT3-AS1 exerts oncogenic effects on nonsmall cell lung cancer by targeting microRNA-507/homeobox B5 axis[J]. Oncol Res, 2021, 29(6):411– 423. doi:10.32604/or.2022.026236.
- [29] Li JW, Zhu ZB, Li SS, et al. Circ_0089823 reinforces malignant behaviors of non-small cell lung cancer by acting as a sponge for microRNAs targeting SOX4[J]. Neoplasia, 2021, 23(9): 887–897. doi:10.1016/j.neo.2021.06.011.
- [30] Feng XG, Yang SS. Long non-coding RNA LINC00243 promotes proliferation and glycolysis in non-small cell lung cancer cells by positively regulating PDK4 through sponging miR-507[J]. Mol Cell Biochem, 2020, 463(1/2):127–136. doi:10.1007/s11010-019-03635-3.
- [31] Sun CM, Li GD, Liu M. A novel circular RNA, circ_0005394, predicts unfavorable prognosis and contributes to hepatocellular carcinoma progression by regulating miR-507/E2F3 and miR-515-5p/CXCL6 signaling pathways[J]. Onco Targets Ther, 2020, 13: 6171–6180. doi:10.2147/OTT.S256238.
- [32] Jia LY, Liu W, Cao B, et al. MiR-507 inhibits the migration and invasion of human breastcancer cells through Flt-1 suppression[J]. Oncotarget, 2016, 7(24): 36743–36754. doi: 10.18632/ oncotarget.9163.
- [33] Fang X, Pan AP. MiR-507 inhibits the progression of gastric carcinoma via targeting CBX4-mediated activation of Wnt/β -catenin and HIF-1α pathways[J]. Clin Transl Oncol, 2022, 24(10): 2021–2028. doi:10.1007/s12094-022-02862-3.
- [34] Rim EY, Clevers H, Nusse R. The Wnt pathway: from signaling mechanisms to synthetic modulators[J]. Annu Rev Biochem, 2022, 91:571–598. doi:10.1146/annurev-biochem-040320-103615.

- [35] Zhu N, Yang RZ, Wang XD, et al. The Hippo signaling pathway: from multiple signals to the hallmarks of cancers[J]. Acta Biochim Biophys Sin (Shanghai), 2023, 55(6): 904–913. doi: 10.3724/ abbs.2023035.
- [36] Chen HR, Wong CC, Liu DB, et al. APLN promotes hepatocellular carcinoma through activating PI3K/Akt pathway and is a druggable target[J]. Theranostics, 2019, 9(18): 5246–5260. doi: 10.7150/ thno.34713.
- [37] Dupont J, Reverchon M, Cloix L, et al. Involvement of adipokines, AMPK, PI3K and the PPAR signaling pathways in ovarian follicle development and cancer[J]. Int J Dev Biol, 2012, 56(10/11/12): 959–967. doi:10.1387/ijdb.120134jd.
- [38] PodgÓrska M, Pietraszek-Gremplewicz K, OlszaŃska J, et al. The role of apelin and apelin receptor expression in migration and invasiveness of colon cancer cells[J]. Anticancer Res, 2021, 41(1): 151–161. doi:10.21873/anticanres.14760.
- [39] Li HQ, Fan JJ, Li XH, et al. MiR-507 inhibits the growth and invasion of trophoblasts by targeting CAMK4[J]. Eur Rev Med Pharmacol Sci, 2020, 24(11): 5856–5862. doi: 10.26355/eurrev_ 202006_21477.
- [40] Li ZZ, Lu JY, Zeng G, et al. MiR-129-5p inhibits liver cancer growth by targeting calcium calmodulin-dependent protein kinase IV (CAMK4)[J]. Cell Death Dis, 2019, 10(11):789. doi: 10.1038/ s41419-019-1923-4.
- [41] Lin FM, Marcelo KL, Rajapakshe K, et al. The camKK2/camKIV relay is an essential regulator of hepatic cancer[J]. Hepatology, 2015, 62(2):505–520. doi:10.1002/hep.27832.
- [42] Naz H, Tarique M, Khan P, et al. Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells[J]. Mol Cell Biochem, 2018, 438(1/2):35-45. doi:10.1007/s11010-017-3111-0.
- [43] Naz H, Islam A, Ahmad F, et al. Calcium/calmodulin-dependent protein kinase IV : a multifunctional enzyme and potential therapeutic target[J]. Prog Biophys Mol Biol, 2016, 121(1):54–65. doi:10.1016/j.pbiomolbio.2015.12.016.

(本文编辑 宋涛)

本文引用格式:朱雪音,马宁,陈松,等.lncRNA FOXP4-AS1通过 miR-507调控甲状腺乳头状癌细胞生物学行为的作用机制研究[J]. 中国普通外科杂志,2024,33(5):796-814. doi:10.7659/j.issn.1005-6947.2024.05.013

Cite this article as: Zhu XY, Ma N, Chen S, et al. Mechanism of lncRNA FOXP4-AS1 regulating the biological behavior of papillary thyroid carcinoma cells via miR–507[J]. Chin J Gen Surg, 2024, 33(5): 796–814. doi:10.7659/j.issn.1005–6947.2024.05.013