恶性胆道梗阻ERCP术后早期胆道感染预测模型的建立与评价
作者:
通讯作者:
作者单位:

1.宁夏医科大学总医院 肝胆外科,宁夏 银川 750004;2.宁夏医科大学 临床医学院,宁夏 银川 750004

作者简介:

马勇新,宁夏医科大学总医院住院医师,主要从事肝胆胰外科方面的研究。

基金项目:


Establishment and evaluation of early biliary infection prediction model after ERCP in malignant biliary obstruction
Author:
Affiliation:

1.Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China;2.School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 音频文件
  • |
  • 视频文件
    摘要:

    背景与目的 早期胆道感染(EBI)作为恶性胆道梗阻(MBO)患者行内镜逆行胰胆管造影(ERCP)联合胆道支架植入术后的常见并发症,其对患者的生存时间和生活质量产生重要影响,目前的研究主要关注在胆道感染的危险因素方面,而有关EBI发生风险预测模型的研究少见。因此,本研究基于术前临床资料构建MBO患者行ERCP联合胆道支架植入术后EBI的风险预测模型,以期通过术前临床资料早期精准干预,降低患者EBI的发生率。方法 回顾性分析2018年1月—2021年9月在宁夏医科大学总医院肝胆外科行ERCP联合胆道支架植入术的285例患者临床资料(纳入的所有患者经影像资料或病理证据诊断为MBO)。研究终点为ERCP术后30 d内发生胆道感染。按照7∶3随机分为建模组及验证组。建模组资料经过单变量分析及多变量Logistic回归分析构建预测模型,人工神经网络(ANN)评价预测变量重要性。对模型进行内外部验证,绘制受试者工作曲线(ROC)及校正曲线评估检验模型。结果 共纳入285例患者临床资料,随机分组后建模组200例,验证组85例。单变量及多变量分析结果显示,梗阻位置(OR=5.942,95% CI=2.507~14.081,P<0.001),胆结石(OR=4.821,95% CI=2.087~11.138,P<0.001),糖尿病(OR=5.407,95% CI=2.067~14.148,P=0.001),梗阻长度(OR=1.058,95% CI=1.028~1.089,P<0.001)为MBO患者ERCP术后EBI的独立危险因素,通过独立危险因素构建Logistic回归模型并以列线图形式将模型可视化。利用ANN评估预测变量所占权重由高到低依次为:梗阻长度(46.8%)、梗阻位置(18.6%)、糖尿病(18.1%)、胆结石(16.5%)。Logistic模型经内外部验证,曲线下面积(AUC)分别为0.807和0.831,C指数分别为0.807和0.831,Hosmer-Lemeshow拟合优度评估模型预测值与实值之间无明显偏差(建模组:P=0.845,验证组:P=0.197)。结论 所构建的Logistic模型可以较好地预测ERCP术后EBI的发生风险,经ANN评估梗阻长度是最重要的预测变量,此模型可为临床预防EBI的发生提供一定的价值。对于术后可能发生EBI的高危患者,术前应尽可能行相关干预措施,尽量避免相关危险因素的影响,减少EBI的发生。

    Abstract:

    Background and Aims Early biliary infection (EBI), as a common complication after endoscopic retrograde cholangiopancreatography (ERCP) combined with biliary stenting in patients with malignant biliary obstruction (MBO), has a significant impact on the survival time and quality of life of patients, and the current research mainly focuses on the risk factors for biliary tract infections, whereas studies on the risk prediction model for the occurrence of EBI are rare. Therefore, based on preoperative clinical data, this study was conducted to construct a risk prediction model of EBI after ERCP combined with biliary stent placement in MBO patients to reduce the incidence of EBI in patients through early and precise preoperative intervention.Methods The clinical data of 285 patients who underwent ERCP combined with biliary stent placement in the Department of Hepatobiliary Surgery of the General Hospital of Ningxia Medical University from January 2018 to September 2021 were retrospectively analyzed (all patients included were diagnosed with MBO by imaging data or pathological evidence). The study endpoint was biliary infection within 30 d after ERCP. The patients were randomized into modeling and validation groups in a 7∶3 ratio. The data of the modeling group were analyzed by univariate analysis and multivariate Logistic regression analysis to construct a predictive model, and artificial neural network (ANN) was used to evaluate the importance of predictor variables. The model was internally and externally validated, and receiver operating characteristic (ROC) and calibration curves were generated to evaluate and test the model's performance.Results The clinical data of 285 patients were included in this study, with 200 cases assigned to the modeling group and 85 cases to the validation group after randomization. Results from univariate and multivariate analyses indicated that location of obstruction (OR=5.942, 95% CI=2.507-14.081, P<0.001), gallstones (OR=4.821, 95% CI=2.087-11.138, P<0.001), diabetes mellitus (OR=5.407, 95% CI=2.067-14.148, P=0.001), and infarct length (OR=1.058, 95% CI=1.028-1.089, P<0.001) were independent risk factors for EBI in MBO patients after ERCP. Logistic regression models were constructed from the independent risk factors and the models were visualized in the form of a nomogram. The assessment of predictive variable weights using ANN ranked them as follows: obstruction length (46.8%), obstruction location (18.6%), diabetes (18.1%), and gallstones (16.5%). The Logistic model underwent internal and external validation, yielding area under the curve (AUC) values of 0.807 and 0.831 and C-index values of 0.807 and 0.831, respectively. The Hosmer-Lemeshow goodness-of-fit test indicated no significant deviations between predicted and actual values (modeling group: P=0.845, validation group: P=0.197).Conclusion According to the ANN evaluation, the constructed Logistic model effectively predicts the risk of post-ERCP EBI occurrence, with obstruction length being identified as the most crucial predictive variable. This model holds potential value for clinical efforts to prevent EBI occurrences. For high-risk patients who might experience postoperative EBI, relevant preemptive measures should be taken before surgery to mitigate the impact of associated risk factors and minimize the incidence of EBI.

    表 1 患者基线特征Table 1 The baseline characteristics of the patients
    表 5 模型预测EBI发生的性能Table 5 Performance of the model in predicting the occurrence of EBI
    图1 EBI风险预测列线图(变量糖尿病、胆结石中1表示存在,0表示不存在;变量梗阻位置中1表示高位梗阻,0表示低位梗阻;梗阻长度以mm为计量单位;顶部为各变量得分值,4个变量得分值合计得到总得分值,对应的底部为EBI发生风险值)Fig.1 Nomogram for EBI risk prediction (In the variables of diabetes and gallstones, 1 indicates the presence and 0 indicates the absence; in the variable obstruction position, 1 indicates high obstruction and 0 indicates low obstruction; the length of obstruction is measured in mm; the top is the score value of each variable, the total score is obtained by summing the score values of the four variables, and the corresponding bottom is the risk value of EBI)
    图2 ROC曲线及AUC A:建模组;B:验证组Fig.2 ROC curve and AUC A: Modeling group; B: Validation group
    图3 校准图(横坐标表示预测值,纵坐标表示真实值)Fig.3 Calibration chart (the horizontal axis represents predicted values, and the vertical axis represents actual values)
    图4 预测变量重要性(底部横坐标表示重要性,范围0~0.5;顶部横坐标表示标准化重要性,范围0~100%)Fig.4 Importance of predictor variables (bottom horizontal axis represents importance, ranging from 0 to 0.5; top horizontal axis represents standardized importance, ranging from 0 to 100%)
    表 4 自变量重要性Table 4 Importance of independent variables
    表 3 EBI危险因素的多变量回归分析Table 3 Multivariate regression analysis of risk factors for EBI
    表 2 EBI相关因素的单变量分析Table 2 Univariate analysis of EBI related variables
    参考文献
    相似文献
    引证文献
引用本文

马勇新,张旭升,柳科军,刘伊敏,周红才,魏鹏,陈本栋.恶性胆道梗阻ERCP术后早期胆道感染预测模型的建立与评价[J].中国普通外科杂志,2023,32(8):1208-1217.
DOI:10.7659/j. issn.1005-6947.2023.08.009

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-04-03
  • 最后修改日期:2023-07-26
  • 录用日期:
  • 在线发布日期: 2023-11-03