预测结直肠癌预后免疫相关基因对标志模型的构建及验证
作者:
通讯作者:
作者单位:

作者简介:

基金项目:

湖南省自然科学基金资助项目(2020JJ3054)。


Development and validation of immune-related gene pairs signature for prognostic prediction of colorectal cancer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 音频文件
  • |
  • 视频文件
    摘要:

    背景与目的:结直肠癌(CRC)是一种诊断较晚、预后较差的侵袭性疾病。越来越多的证据表明CRC与免疫标志之间存在密切的相关性。本研究旨在建立用以预测CRC患者预后的免疫相关基因对(IRGP)标志。
    方法: 从TCGA和GEO数据库下载CRC患者的基因表达谱及临床信息,分为一个训练数据集(TCGA-COAD)和一个验证数据集(GSE39582)。从ImmPort数据库中下载免疫相关基因(IRG),用于训练数据集及验证数据集中IRG的筛选。对每一个样本中IRG的表达值进行成对的比较,运用Lasso-Cox比例风险模型迭代1 000次来构建最终IRGP标志[免疫基因对指数(IRGPI)]。利用IRGP标志的ROC曲线将CRC患者分为高风险和低风险组,并且使用Kaplan-Meier法及Log-Rank检验分析两组患者的生存状态。同时,使用单因素及多因素的Cox比例风险回归模型分析评估了此标志的预测能力。随后,应用CIBERSORT对肿瘤样品进行去卷积算法,明确CRC患者的免疫细胞浸润情况。最后,对模型进行了功能注释及分析,用以进一步了解模型的相关生物学功能。
    结果:成功构建了20个由28个不同的IRG组成的IRGPI(CXCL14|BST2,RBP1|STC2,RBP7|PTGS2,RBP7|ARG2,RBP7|IL7,APOD|IL17RB,GNAI1|GRP,CCL4|INHBB,CCL28|INHBB,ABCC4|GRP,ARG2|GRP,CCR7|INHBB,CD86|IL7,OLR1|IL7,C5AR1|NR3C2,INHBB|PDGFC,STC2|HNF4G,IL10RA|TNFRSF11A,RORC|PRKCQ,TNFRSF11A|LCK),这些标志与CRC患者的预后明显相关。在训练数据集中,高风险组的CRC患者总生存率明显差于低风险组的CRC患者(P=1.295×10-11,HR=6.51,95% CI=3.79~11.21),在验证数据集中得到的验证结果与之相同(P=0.000 1,HR=1.82,95% CI=1.36~2.44)。单因素和多因素Cox分析显示,IRGPI是CRC的独立预后因素(训练数据集:HR=3.270,95% CI=2.555~4.186,P<0.001、HR=3.008,95% CI=2.295~3.941,P<0.001;验证数据集:HR=1.278,95% CI=1.107~1.474,P<0.001、HR=1.189,95% CI=1.024~1.380,P=0.023)。根据免疫细胞浸润分析显示,相比较低风险组而言,高风险组中调节性
    T细胞(P=0.007),巨噬细胞(P=0.024)含量明显更高,而静息树突状细胞(P=0.006),静息CD4+记忆T细胞(P=1.784×10e-05)在低风险组中的含量更为显著。功能注释结果显示,IRG与一些生物过程有关,包括白细胞迁徙,细胞趋化性,细胞因子-细胞因子-受体相互作用等。而在高-低风险组间存在显著差异的相关通路有:角化细胞分化、角化、表皮细胞分化、皮肤发育等过程。
    结论:本研究成功构建了可以预测CRC患者预后的IRGP标志,从而为CRC的诊断及相关治疗提供了新的思路。

    Abstract:

    Background and Aims: Colorectal cancer (CRC) is an aggressive disease with late diagnosis and poor prognosis. There is growing evidence suggesting a prominent correlation between immune signature and CRC. This study was aimed to establish an immune-related gene pairs (IRGP) signature for predicting the outcomes of CRC patients. 
    Methods: The gene expression profiles and clinical information of CRC patients were extracted from TCGA and GEO databases, and were then divided into a training dataset (TCGA-COAD) and a validation dataset (GSE39582). Immune-related genes (IRGs) were downloaded from the ImmPort database for screening of the IRGs in the training dataset and the validation dataset. Paired comparison of the expression values of IRGs in each sample was performed, and the final immune-related gene pairs (IRGP) signature [immune-related gene pair index (IRGPI)] was constructed by Lasso-Cox proportional hazard model with an iteration number of 1 000. Then, the ROC curve of the IRGP signature was applied to split CRC patients into high and low-risk groups, followed by analysis of the survival states of the two groups of patients using Kaplan-Meier curves and Log-rank test. Simultaneously, the predictive ability of the signature was evaluated using univariate and multivariate Cox proportional hazards regression models. Subsequently, the infiltration conditions of immune cells in CRC patients were identified on the tumor samples using CIBERSORT through deconvolution algorithms. Finally, functional annotation and analyses of the model were performed to further understand its biological functions.
    Results: Twenty IRGPI containing 28 IRGs were successfully constructed (CXCL14|BST2, RBP1|STC2, RBP7|PTGS2, RBP7|ARG2, RBP7|IL7, APOD|IL17RB, GNAI1|GRP, CCL4|INHBB, CCL28|INHBB, ABCC4|GRP, ARG2|GRP, CCR7|INHBB, CD86|IL7, OLR1|IL7, C5AR1|NR3C2, INHBB|PDGFC, STC2|HNF4G, IL10RA|TNFRSF11A, RORC|PRKCQ, TNFRSF11A|LCK), which were significantly associated with the prognosis of CRC patients. In the training dataset, the overall survival of CRC patients in high-risk group was shorter than that of CRC patients in the low-risk group (P=1.295×10–11, HR=6.51, 95% CI=3.79–11.21), and the similar result was obtained in the validation dataset (P=0.000 1, HR=1.82, 95% CI=1.36–2.44). Univariate and multivariate Cox analysis verified IRGPI as an independent prognostic factor for CRC (training dataset: HR=3.270, 95% CI=2.555–4.186, P<0.001 and HR=3.008, 95% CI=2.295–3.941, P<0.001; validation dataset: HR=1.278, 95% CI=1.10–1.474, P<0.001 and HR=1.189, 95% CI=1.024–1.380, P=0.023). According to the analysis of tumor-infiltrating immune cells, the regulatory T cells (P=0.007) and macrophages (P=0.024) in high-risk group were significantly higher than those in low-risk group, while the resting dendritic cells (P=0.006), resting memory CD4+T cells (P=0.006), and resting macrophages (P=1.784×10e–05) were significantly increased in low-risk group. The results of functional annotation indicated that IRGs correlate with certain biological processes, which included the leukocyte migration, cell chemotaxis, cytokine-cytokine-receptor interaction, etc. Further, the related pathways with significant differences between high and low-risk groups included the keratinocyte differentiation, keratinization, epidermal cell differentiation, and skin development, etc.
    Conclusion: A IRGP signature for evaluating the prognosis of CRC patients is successfully constructed, which may provide novel insights into the diagnosis and treatment of CRC.

    参考文献
    相似文献
    引证文献
引用本文

徐文迪,田那科·沙帕尔,刘奎杰,韩同,赵华.预测结直肠癌预后免疫相关基因对标志模型的构建及验证[J].中国普通外科杂志,2021,30(4):449-463.
DOI:10.7659/j. issn.1005-6947.2021.04.010

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-10-25
  • 最后修改日期:2021-04-25
  • 录用日期:
  • 在线发布日期: 2021-09-03