胰十二指肠切除术后临床相关胰瘘风险预测模型构建及验证
作者:
通讯作者:
作者单位:

宁夏医科大学总医院 肝胆外科,宁夏 银川 750004

作者简介:

张丹阳,宁夏医科大学总医院住院医师,主要从事肝胆胰外科疾病方面的研究。

基金项目:

宁夏回族自治区财政厅重点研发计划基金资助项目(2018BEG03001)。


Construction and validation of a risk prediction model for clinically relevant pancreatic fistula after pancreaticoduodenectomy
Author:
Affiliation:

Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 音频文件
  • |
  • 视频文件
    摘要:

    背景与目的 随着外科技术的进步以及临床医师不断完善手术方式,胰十二指肠切除术(PD)的手术死亡显著减少,但术后并发症发生率仍居高不下,其中最常见和最严重的是术后胰瘘(POPF)。因此,本研究探讨PD后发生临床相关胰瘘(CR-POPF)的危险因素并开发风险预测模型。方法 回顾性收集2015年1月—2021年7月宁夏医科大学总医院肝胆外科行PD治疗的365例患者临床资料。通过计算机产生随机数的方法以7∶3比例随机分为建模组和验证组,对建模组采用单因素及多因素Logistic回归分析确立CR-POPF的独立危险因素,构建临床预测模型,以列线图进行可视化呈现;利用受试者工作特征(ROC)曲线评价区分度,并通过Bootstrap重复自抽样法进行内部验证,绘制校准曲线评价校准度;将验证组代入模型绘制ROC曲线和校准曲线,验证模型的预测效能。结果 单因素分析结果显示,性别、BMI、腹部手术史、主胰管直径、胰腺质地、中性粒细胞计数、单核细胞计数、淋巴细胞计数与单核细胞计数比值、术后乳酸与CR-POPF明显有关(均P<0.05);多因素二元Logistic回归分析显示,男性(OR=2.896,95% CI=1.368~6.390)、术后高乳酸(OR=3.593,95% CI=2.211~6.172)、主胰管直径≤3 mm(OR=0.243,95% CI=0.102~0.552)、胰腺质软(OR=0.146,95% CI=0.061~0.331)是CR-POPF的独立危险因素(均P<0.05)。结合回归系数建立数学模型,构建列线图实现模型可视化。模型ROC曲线下面积(AUC)为0.897(95% CI=0.857~0.936);校准度评估结果显示,模拟曲线和实际曲线走势基本一致,平均绝对误差(MAE)=0.014。将验证组数据代入预测模型,绘制验证组预测CR-POPF风险的ROC曲线,结果显示,AUC为0.901(95% CI=0.844~0.959);校准曲线显示,验证组的模拟曲线和实际曲线走势基本一致(MAE=0.019)。结论 男性、胰腺质软、主胰管直径≤3 mm、术后高乳酸与PD术后发生POPF密切相关。依据这四项指标建立的术后早期CR-POPF预测模型具有良好的效能,能指导临床医师制定PD术后患者的治疗方案。

    Abstract:

    Background and Aims With the advancement of surgical techniques and clinicians' continuous refinement of surgical approaches, the surgical mortality of pancreaticoduodenectomy (PD) has significantly decreased. However, the incidence of postoperative complications remains high, with postoperative pancreatic fistula (POPF) being the most common and severe. Therefore, this study was conducted to investigate the risk factors for clinically relevant POPF (CR-POPF) after PD and develop a risk prediction model.Methods The clinical data of 365 patients who underwent PD in the Department of Hepatobiliary Surgery of General Hospital of Ningxia Medical University from January 2015 to July 2021 were retrospectively collected. Patients were randomly divided into modeling and validation groups at a ratio of 7∶3 based on a random number generator. Univariate and multivariate Logistic regression analyses were conducted on the modeling group to determine independent risk factors for CR-POPF. A clinical prediction model was constructed and visualized using a nomogram. The discriminative ability was evaluated using the ROC curve, and Bootstrap drew the calibration curve and repeated the self-sampling method for internal validation. The validation group was incorporated into the model to verify the predictive performance of the model by drawing the ROC curve and calibration curve.Results Univariate analysis showed that sex, BMI, history of abdominal surgery, main pancreatic duct diameter, pancreatic texture, neutrophil count, monocyte count, lymphocyte count, the ratio of monocytes to lymphocytes, and postoperative lactate were significantly associated with CR-POPF (all P<0.05). Multivariate Logistic regression analysis revealed that male sex (OR=2.896, 95% CI=1.368-6.390), high postoperative lactate (OR=3.593, 95% CI=2.211-6.172), main pancreatic duct diameter ≤3 mm (OR=0.243, 95% CI=0.102-0.552), and soft pancreatic texture (OR=0.146, 95% CI=0.061-0.331) were independent risk factors for CR-POPF (all P<0.05). A mathematical model was established based on regression coefficients, and a nomogram was constructed for visualization. The area under the ROC curve (AUC) of the model was 0.897 (95% CI=0.857-0.936); calibration assessment showed that the trend of the simulated curve was consistent with the actual curve (MAE=0.014). The validation group data were applied to the prediction model, and the ROC curve for predicting the risk of POPF CR-POPF in the validation group showed an AUC of 0.901 (95% CI=0.844-0.959); the calibration curve demonstrated that the trend of the simulated curve in the validation group was consistent with the actual curve (MAE=0.019).Conclusion Male sex, soft pancreatic texture, main pancreatic duct diameter ≤3 mm, and high postoperative lactate are closely associated with the occurrence of POPF after PD. A predictive model for early postoperative CR-POPF based on these four variables demonstrates good performance and can guide clinicians in making treatment plans for patients undergoing PD.

    表 3 建模组Logistic单因素分析Table 3 Logistic univariate analysis of the modeling group
    表 1 建模组与验证组基线资料比较Table 1 Comparison of baseline data between the modeling group and the validation group
    图1 主胰管扩张的CT表现 A:胰头部胰管明显扩张;B:胰体部胰管扩张;C:胰尾部胰管扩张并呈串珠样改变Fig.1 CT manifestations of main pancreatic duct dilation A: Significant dilation of the pancreatic duct in the pancreatic head; B: Dilation of the pancreatic duct in the pancreatic body; C: Dilation of the pancreatic duct in the pancreatic tail with bead-like changes
    图2 预测模型列线图Fig.2 Nomogram predictive model
    图3 模型效能评估 A:建模组ROC曲线;B:建模组校准曲线Fig.3 Model performance evaluation A: ROC curve of the modeling group; B: Calibration curve of the modeling group
    图4 模型效能验证 A:验证组ROC曲线;B:验证组校准曲线Fig.4 Model performance validation A: ROC curve of the validation group; B: Calibration curve of the validation group
    图1 主胰管扩张的CT表现 A:胰头部胰管明显扩张;B:胰体部胰管扩张;C:胰尾部胰管扩张并呈串珠样改变Fig.1 CT manifestations of main pancreatic duct dilation A: Significant dilation of the pancreatic duct in the pancreatic head; B: Dilation of the pancreatic duct in the pancreatic body; C: Dilation of the pancreatic duct in the pancreatic tail with bead-like changes
    图2 预测模型列线图Fig.2 Nomogram predictive model
    图3 模型效能评估 A:建模组ROC曲线;B:建模组校准曲线Fig.3 Model performance evaluation A: ROC curve of the modeling group; B: Calibration curve of the modeling group
    图4 模型效能验证 A:验证组ROC曲线;B:验证组校准曲线Fig.4 Model performance validation A: ROC curve of the validation group; B: Calibration curve of the validation group
    图1 主胰管扩张的CT表现 A:胰头部胰管明显扩张;B:胰体部胰管扩张;C:胰尾部胰管扩张并呈串珠样改变Fig.1 CT manifestations of main pancreatic duct dilation A: Significant dilation of the pancreatic duct in the pancreatic head; B: Dilation of the pancreatic duct in the pancreatic body; C: Dilation of the pancreatic duct in the pancreatic tail with bead-like changes
    图2 预测模型列线图Fig.2 Nomogram predictive model
    图3 模型效能评估 A:建模组ROC曲线;B:建模组校准曲线Fig.3 Model performance evaluation A: ROC curve of the modeling group; B: Calibration curve of the modeling group
    图4 模型效能验证 A:验证组ROC曲线;B:验证组校准曲线Fig.4 Model performance validation A: ROC curve of the validation group; B: Calibration curve of the validation group
    表 2 建模组单因素分析Table 2 Multivariate analysis of the modeling group
    参考文献
    相似文献
    引证文献
引用本文

张丹阳,雷鹏,张宇波,杨刚,张伟.胰十二指肠切除术后临床相关胰瘘风险预测模型构建及验证[J].中国普通外科杂志,2024,33(3):366-375.
DOI:10.7659/j. issn.1005-6947.2024.03.007

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-09-13
  • 最后修改日期:2024-01-28
  • 录用日期:
  • 在线发布日期: 2024-04-10