浆细胞性乳腺炎的危险因素分析及列线图预测模型建立
作者:
通讯作者:
作者单位:

1.浙江省杭州市妇产科医院 乳腺科,浙江 杭州 310016;2.浙江省立同德医院 神经外科,浙江 杭州 310012

作者简介:

马啸文,浙江省杭州市妇产科医院住院医师,主要从事乳腺癌的治疗及非哺乳期乳腺炎预后方面的研究。

基金项目:


Risk factor for plasma cell mastitis and construction of a nomogram prediction model
Author:
Affiliation:

1.Department of Breast Surgery, Hangzhou Women's Hospital, Hangzhou310016, China;2.Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou310012, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 音频文件
  • |
  • 视频文件
    摘要:

    背景与目的 浆细胞性乳腺炎(PCM)目前危险因素尚不明确,疾病特点为发病急、发展迅速、病程长、缺少特效药、目前应用于临床的中西医治疗方法均效果不够确切且复发率高。因此,明确并尽量规避PCM的危险因素从而达到治未病的目的成为此疾病的关注点。本研究探讨PCM发生的相关危险因素,并建立列线图预测模型,以期预测有相关危险因素的人群此疾病的发病概率,并对PCM的预防提出相应指导。方法 回顾性收集2019年1月—2022年1月期间浙江省杭州市妇产科医院乳腺科收治的82例PCM患者(研究组)的临床资料,并随机选取同一时间段在该院进行健康体检未罹患乳腺疾病的中青年女性82例为对照组。用单因素与多因素Logistic回归分析,筛选PCM发生的危险因素,建立预测PCM发生风险的列线图模型,绘制受试者工作特征曲线(ROC)和校准曲线、计算C指数用以评价该列线图模型对PCM发病风险的预测价值。结果 研究组所有患者均有流产和(或)分娩史,产后/流产后至发病时间间隔为1~7年,平均为(3.37±1.91)年。单因素分析显示,两组的体质量指数、乳头内陷比例、怀孕次数、外伤史(包括按摩、通乳史)比例、血脂水平的差异有统计学意义(均P<0.05);多因素Logistic回归分析结果显示,乳头内陷(OR=0.074,95% CI=0.023~0.239,P=0.000)、怀孕次数≥3次(OR=0.047,95% CI=0.008~0.288,P=0.001)、外伤史(OR=0.153,95% CI=0.059~0.399,P=0.000)为PCM发生的独立危险因素。整合以上因素构建的列线模型预测PCM发生风险的C指数为0.855,有中度准确性。使用“Boot”法绘制校准曲线,校正曲线与理想曲线拟合良好;所绘制的ROC曲线下面积为0.855(95% CI=0.800~0.910)。结论 乳头内陷、外伤史、怀孕次数与PCM的发生密切相关,所建立的列线图预测模型具有中度准确性,性能良好,临床可以应用该模型对处于PCM高发时间段的女性进行预测,得到一个量化的发病可能性结果,并以此依据为高风险人群提供疾病预防建议。

    Abstract:

    Background and Aims The risk factors for plasma cell mastitis (PCM) remain unclear. The disease is characterized by acute onset, rapid progression, prolonged course, lack of specific drugs, and high recurrence rates despite current clinical treatments using both Western and traditional Chinese medicine. Identifying and minimizing the risk factors for PCM to achieve early prevention has become a critical focus. This study investigated the risk factors associated with PCM and established a nomogram prediction model to estimate the probability of PCM occurrence in at-risk populations, providing guidance for disease prevention.Methods The clinical data from 82 PCM patients (study group) treated in the Breast Surgery Department of Hangzhou Obstetrics and Gynecology Hospital between January 2019 and January 2022 were retrospectively collected. Additionally, 82 middle-aged and young women who underwent health check-ups during the same period and had no breast diseases were randomly selected as the control group. Univariate and multivariate Logistic regression analyses were used to identify risk factors for PCM. A nomogram model predicting PCM risk was developed, and the receiver operating characteristic (ROC) curve, calibration curve, and concordance index (C-index) were used to evaluate its predictive performance.Results All patients in the study group had a history of abortion and/or childbirth, with a postpartum/post-abortion onset interval ranging from 1 to 7 years, averaging (3.37±1.91) years. Univariate analysis revealed significant differences between the two groups in body mass index, proportion of nipple retraction, number of pregnancies, history of trauma (including massage or lactation promotion), and lipid levels (all P<0.05). Multivariate Logistic regression analysis identified nipple retraction (OR=0.074, 95% CI=0.023-0.239, P=0.000), ≥3 pregnancies (OR=0.047, 95% CI=0.008-0.288, P=0.001), and history of trauma (OR=0.153, 95% CI=0.059-0.399, P=0.000) as independent risk factors for PCM. The nomogram model constructed based on these factors demonstrated a C-index of 0.855, indicating moderate accuracy. The calibration curve, generated using the "Boot" method, showed good agreement with the ideal curve. The area under the ROC curve was 0.855 (95% CI=0.800-0.910).Conclusion Nipple retraction, history of trauma, and the number of pregnancies are closely associated with PCM occurrence. The established nomogram prediction model exhibits moderate accuracy and good performance. It can be used clinically to predict the risk of PCM in women during high-incidence periods. It provides a quantitative estimation of disease probability, which can serve as a basis for offering targeted prevention recommendations to high-risk individuals.

    图1 PCM发生风险的预测模型(在图中找到变量轴上的相应点,从该点做垂线,与上方单项得分的评分尺的交点即为该变量的得分,对各变量得分求和得到总分,以总分对应PCM的发生风险)Fig.1 Prediction model for PCM risk (locate the corresponding points for variables on their respective axes in the figure, draw a vertical line from each point to intersect with the scoring scale for individual scores above, obtaining the score for that variable, and sum up the scores for all variables to calculate the total score, which corresponds to the risk of PCM occurrence)
    图2 列线图模型校准曲线Fig.2 Calibration curve of the nomogram model
    图3 列线图模型的ROC曲线Fig.3 ROC curve of the nomogram model
    图1 PCM发生风险的预测模型(在图中找到变量轴上的相应点,从该点做垂线,与上方单项得分的评分尺的交点即为该变量的得分,对各变量得分求和得到总分,以总分对应PCM的发生风险)Fig.1 Prediction model for PCM risk (locate the corresponding points for variables on their respective axes in the figure, draw a vertical line from each point to intersect with the scoring scale for individual scores above, obtaining the score for that variable, and sum up the scores for all variables to calculate the total score, which corresponds to the risk of PCM occurrence)
    图2 列线图模型校准曲线Fig.2 Calibration curve of the nomogram model
    图3 列线图模型的ROC曲线Fig.3 ROC curve of the nomogram model
    表 2 多因素Logistic回归分析结果Table 2 Results of multivariable Logistic regression analysis
    参考文献
    相似文献
    引证文献
引用本文

马啸文,张峰,孙一鸣.浆细胞性乳腺炎的危险因素分析及列线图预测模型建立[J].中国普通外科杂志,2024,33(11):1846-1853.
DOI:10.7659/j. issn.1005-6947.2024.11.011

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-11-07
  • 最后修改日期:2024-03-19
  • 录用日期:
  • 在线发布日期: 2024-12-18