医学影像人工智能在甲状腺癌诊疗中的应用:现状与展望
作者:
通讯作者:
作者单位:

1.中南大学湘雅医院 核医学科,湖南 长沙 410008;2.中南大学湘雅三医院 核医学科,湖南 长沙 410013

作者简介:

刘才广,中南大学湘雅医院住院医师,主要从事甲状腺核医学方面的研究。

基金项目:

湖南省临床医疗技术创新引导基金资助项目(2020SK53705)。


Applications of medical imaging artificial intelligence in the diagnosis and treatment of thyroid cancer: current status and future prospects
Author:
Affiliation:

1.Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha410008,China;2.Department of Nuclear Medicine, the Third Xiangya Hospital, Central South University, Changsha410013, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 音频文件
  • |
  • 视频文件
    摘要:

    甲状腺癌是内分泌系统最常见的恶性肿瘤,近年来,其发病率正逐年攀升。甲状腺乳头状癌(PTC)和甲状腺滤泡状癌(FTC)统称为分化型甲状腺癌(DTC),约占甲状腺癌95%。在DTC的诊断、分期、危险度分层以及治疗过程中,影像检查例如超声、电子计算机断层成像(CT)、磁共振成像(MRI)、单光子发射计算机断层显像(SPECT/CT)及正电子发射计算机断层显像(PET/CT)发挥了重要作用。然而,影像检查图像的分析高度依赖于医师的能力与经验,医师对图像的判读易受图像的数量、复杂程度以及医师自身主观性的影响,尤其是在工作量大的情况下,错误难以避免。另外,仪器分辨率及肉眼判别能力等客观因素亦影响医师读图的准确性。人工智能(AI)是一门模拟、延伸和扩展人类智能的技术科学,已逐步应用于医学领域。在DTC诊疗中涉及的AI技术包括机器学习与深度学习,此外还涉及影像组学技术,主要应用于DTC的诊断与鉴别诊断、DTC的分期评估、DTC基因突变的预测以及DTC的碘-131治疗。AI技术及影像组学技术的应用有望提高DTC的诊断准确性,实现对DTC的准确分期及对DTC基因突变的准确预测,优化DTC的治疗过程,从而实现对DTC的精准诊断与个体化治疗,使患者最大程度获益。

    Abstract:

    Thyroid cancer is the most common malignant tumor of the endocrine system, and its incidence has been steadily increasing in recent years. Papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC), collectively known as differentiated thyroid cancer (DTC), account for approximately 95% of thyroid cancer cases. Imaging examinations such as ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT/CT), and positron emission tomography (PET/CT) play a critical role in the diagnosis, staging, risk stratification, and treatment of DTC. However, the analysis of imaging results heavily depends on the skills and experience of the physician, making the interpretation prone to errors due to factors such as image volume, complexity, and subjective judgment, particularly under high workloads. Additionally, objective factors like equipment resolution and the limitations of human vision can also affect diagnostic accuracy. Artificial intelligence (AI), a technology that simulates, extends, and enhances human intelligence, has gradually been applied in the medical field. In the diagnosis and treatment of DTC, AI technologies such as machine learning and deep learning, as well as radiomics, have been utilized. These technologies are primarily applied in the diagnosis and differential diagnosis of DTC, staging assessments, prediction of genetic mutations, and iodine-131 therapy for DTC. The application of AI and radiomics holds great promise for improving diagnostic accuracy, enabling precise staging, predicting genetic mutations with higher precision, and optimizing treatment strategies for DTC. This advancement is expected to facilitate accurate diagnosis and personalized treatment, maximizing benefits for patients.

    参考文献
    相似文献
    引证文献
引用本文

刘才广,莫屈,肖羿,赵敏.医学影像人工智能在甲状腺癌诊疗中的应用:现状与展望[J].中国普通外科杂志,2024,33(11):1874-1882.
DOI:10.7659/j. issn.1005-6947.2024.11.014

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-12-14
  • 最后修改日期:2024-05-28
  • 录用日期:
  • 在线发布日期: 2024-12-18