摘要
创伤性肠破裂(TE)患者术后常可能伴发急性肺损伤(ALI)/急性呼吸窘迫综合征(ARDS),危及生命,因此,选择合适的早期预测及病情严重程度评估指标具有重要意义。本研究探讨外周血肺表面活性蛋白D(SP-D)、肺表面活性蛋白A(SP-A)、白细胞介素1β(IL-1β)动态监测对TE术后伴发ALI/ARDS的早期预测及病情评估价值。
回顾性分析2019年8月—2020年12月收治的78例TE患者的临床资料,其中52例术后未发生肺损伤组(对照组),15例术后发生ALI(ALI组),11例术后发生ARDS(ARDS组),分析三组患者的临床指标与外周血SP-D、SP-A、IL-1β水平的动态变化。通过受试者工作曲线(ROC)及相关性分析评判各观察指标对TE术后伴发ALI/ARDS的早期预测价值及病情严重程度评估效能。
各组患者年龄、性别、BMI、致伤因素、损伤部位、手术方式、手术时长及术中出血量差异无统计学意义(均P>0.05),而机械通气时长、降钙素原(PCT)水平、肺损伤预测评分(LIPS)及肺损伤评分(LIS)在对照组、ALI组、ARDS组依次增加,而氧合指数在对照组、ALI组、ARDS组依次降低,差异均有统计学意义(均P<0.05)。术前及术后1、4、7 d的SP-D、SP-A、IL-1β水平在ALI组、ARDS组依次且持续增高,除ALI组与ARDS组术后7 d的SP-A水平差异无统计学意义外(P>0.05),其余差异均有统计学意义(均P<0.05)。ROC曲线分析显示,SP-D、SP-A、IL-1β水平早期预测ALI/ARDS的曲线下面积(0.800、0.919、0.755/0.902、0.931、0.957)均高于PCT(0.739/0.721)及LIPS评分(0.851/0.788),三者联合进行平行试验可提高预测ALI/ARDS的灵敏度至0.997/0.988,三者联合进行系列试验可提高预测ALI/ARDS的特异度至0.999/0.997。相关性分析提示,SP-D、SP-A、IL-1β三项指标与氧合指数均呈明显负相关(r=-0.504、-0.657、-0.717,均P<0.01)、与LIS评分呈明显正相关(r=0.471、0.654、0.634,均P<0.01)。
Chinese Journal of General Surgery, 2021, 30(10):1203-1211.
急性肺损伤(acute lung injury,ALI)/急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)是以急性低氧血症为主要临床表现的严重呼吸系统疾
本研究经安徽医科大学第二附属医院伦理委员会批准。收集我院急诊外科2019年8月—2020年12月诊治的78例TE患者相关临床资料,男51例,女27例;年龄32~71岁。ALI/ARDS的共识定义及分类原则由Europe-America ARDS联席委员会制定通
纳入标准:⑴ 所有纳入对象均诊断为TE且无其他脏器损伤,并在我院检查和手术,ALI和ARDS组患者符合相应的诊断及分类标准;⑵ 均在发病后6 h以内入院,且之前未接受任何治疗措施;⑶ 临床资料完整。排除标准:⑴ 3个月内有外伤及输血史的患者;⑵ 恶性肿瘤个人史且接受过放化疗的患者;⑶ 既往或长期服用免疫抑制剂及激素的患者;⑷ 既往伴有急慢性肺部疾病的患者;⑸ 术后7 d内死亡的入组患者。符合任何一条排除标准的患者,都将被排除出研究队列。
所有患者入院后均行急诊开放性腹部手术治疗。并在宋磊
对照组、ALI组及ARDS组患者间年龄、性别、BMI、致伤因素、损伤部位、手术方式、手术时长及术中失血量的差异无统计学意义(均P>0.05);ALI组和ARDS组患者的机械通气时长、PCT水平、肺损伤预测评分(LIPS)以及肺损伤评分(LIS)在ALI组和ARDS组患者中均明显高于对照组,且ARDS组明显高于ALI组,差异均有统计学意义(均P<0.05);ALI组和ARDS组患者的氧合指数明显低于对照组,且ARDS组明显低于ALI组,差异均有统计学意义(均P<0.05)(
注: 1)与ALI组比较,P<0.05
Note: 1) P<0.05 vs. ALI group
术前外周血SP-D、SP-A、IL-1β水平在ALI组和ARDS组患者中均明显高于对照组,且ARDS组明显高于ALI组(均P<0.05)。动态分析发现,ALI组和ARDS组患者SP-D、SP-A、IL-1β水平在不同时间点均明显高于对照组(P<0.01);ALI和ARDS组间比较发现,除SP-A水平在术后第7天两组无明显差异外(P>0.05),其余各时间点ARDS组的SP-D、SP-A、IL-1β水平均明显高于ALI组(P<0.01)(

图1 外周血SP-D、SP-A、IL-1β水平在三组患者不同时间点的动态变化比较
Figure 1 Comparison of dynamic levels of SP-D, SP-A and IL-1β among three groups
考虑到患者术中术后治疗的个体差异性,故选取影响因素较少的术前SP-D、SP-A、IL-1β、PCT检测值以及LIPS评分作为早期预测资料并做ROC曲线分析。
三项指标对TE术后伴发ALI的早期预测分析结果显示:SP-D最佳阈值为0.66 ng/mL,此时灵敏度为90.4%,特异度为62.9%,AUC为0.800;SP-A最佳阈值为20.02 ng/mL,此时灵敏度为90.4%,特异度为82.3%,AUC为0.919;IL-1β最佳阈值为9.81 ng/mL,此时灵敏度为65.4%,特异度为82.3%,AUC为0.755;以SP-D≥0.66 ng/mL、SP-A≥20.02 ng/mL、IL-1β≥9.81 pg/mL为阈值,三者联合进行平行试验时的灵敏度及特异度分别为99.7%、42.6%;三者联合进行系列试验时的灵敏度及特异度分别为53.4%、98.8%(

图2 SP-D、SP-A、IL-1β早期预测ALI的ROC曲线
Figure 2 ROC curves of SP-D, SP-A and IL-1β for early prediction of ALI
三项指标对TE术后伴发ARDS的早期预测分析结果显示:SP-D最佳阈值为0.96 ng/mL,此时灵敏度为87.5%,特异度为84.7%,AUC为0.902;SP-A最佳阈值为21.26 ng/mL,此时灵敏度为93.8%,特异度为80.6%,AUC为0.931;IL-1β最佳阈值为14.64 ng/mL,此时灵敏度为87.5%,特异度为91.8%,AUC为0.957;以SP-D≥0.96 ng/mL、SP-A≥21.26 ng/mL、IL-1β≥14.64 pg/mL为阈值,三者联合进行平行试验时的灵敏度及特异度分别为99.9%、62.7%;三者联合进行系列试验时的灵敏度及特异度分别为71.8%、99.7%(

图3 SP-D、SP-A、IL-1β早期预测ARDS的ROC曲线
Figure 3 ROC curves of SP-D, SP-A and IL-1β for early prediction of ARDS
将三组患者术前各指标水平与氧合指数做Pearson检验并制作散点图,结果显示:SP-D、SP-A、IL-1β检测值与氧合指数值均呈明显负相关(r=-0.504、-0.657、-0.717,均P<0.01)(

图4 SP-D、SP-A、IL-1β与氧合指数的相关性
Figure 4 Correlation of SP-D, SP-A, and IL-1β with oxygenation index
将三组患者术前各指标水平与诊断ALI/ARDS时的LIS评分做Spearman检验并制作散点图,结果显示:SP-D、SP-A、IL-1β检测值与LIS评分均呈显著正相关(r=0.471、0.654、0.634,均P<0.01)(

图5 SP-D、SP-A、IL-1β与LIS评分的相关性
Figure 5 Correlation of SP-D, SP-A, and IL-1β with LIS score
TE在腹部创伤中较为常见,是急诊行剖腹探查术的适应证之
SP-D作为钙依赖性凝集素家族中的糖蛋白,是肺表面活性物质系统的组成部分。其不仅发挥宿主防御和免疫调节功
SP-A属于亲水性糖蛋白,在所有肺表面活性蛋白中占比最大,其水平高低可反映肺泡上皮屏障损伤状
IL-1β是一种热源性的细胞因子,其促炎作用强
在本研究中,ROC曲线分析示SP-D、SP-A、IL-1β各指标单独预测ALI/ARDS的AUC均高于PCT、LIPS评分,表明三者有望替代上述传统指标而对ALI/ARDS的发生具备更有效的预测价值。ROC曲线分析还发现,SP-A在早期预测TE术后伴发ALI/ARDS方面均表现出较高的灵敏度,且ALI和ARDS组患者SP-A水平在术前即开始明显高于对照组,表明SP-A可以作为早期预测TE术后伴发ALI/ARDS的敏感指标之一;IL-1β预测ARDS的AUC最高,表明其在早期预测TE术后伴发ARDS方面具有更高价值。此外,三者联合平行试验可提高预测TE术后伴发ALI/ARDS的灵敏度,系列试验则有助于提高特异度。但基于本研究中TE术后伴发ALI和ARDS患者样本数较少,尚待后续扩大样本以进一步佐证。
综上所述,血清SP-D、SP-A、IL-1β在TE术后患者伴发ALI/ARDS的早期预测和病情严重程度评估中均有一定的临床价值,其中三者联合动态监测的临床价值更高,且各指标检测方便快捷,值得临床上进一步推广应用。
参考文献
Pedrazza L, Cunha AA, Luft C, et al. Mesenchymal stem cells improves survival in LPS-induced acute lung injury acting through inhibition of NETs formation[J]. J Cell Physiol, 2017, 232(12):3552-3564. doi: 10.1002/jcp.25816. [百度学术]
Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome[J]. N Engl J Med, 2017, 377(6):562-572. doi: 10.1056/NEJMra1608077. [百度学术]
Bellani G, Laffey JG, Pham T, et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries[J]. JAMA, 2016, 315(8):788-800. doi: 10.1001/jama.2016.0291. [百度学术]
O'Gara B, Talmor D. Perioperative lung protective ventilation[J]. BMJ, 2018, 362:k3030. doi: 10.1136/bmj.k3030. [百度学术]
Chen L, Zhao H, Alam A, et al. Postoperative remote lung injury and its impact on surgical outcome[J]. BMC Anesthesiol, 2019, 19(1):30. doi: 10.1186/s12871-019-0698-6. [百度学术]
Marchesi S, Hedenstierna G, Hata A, et al. Effect of mechanical ventilation versus spontaneous breathing on abdominal edema and inflammation in ARDS: an experimental porcine model[J]. BMC Pulm Med, 2020, 20(1):106. doi: 10.1186/s12890-020-1138-6. [百度学术]
Mowery NT, Terzian WTH, Nelson AC. Acute lung injury[J]. Curr Probl Surg, 2020, 57(5): 100777. doi: 10.1016/j.cpsurg.2020.100777. [百度学术]
Imtiazul IM, Asma R, Lee JH, et al. Change of surfactant protein D and A after renal ischemia reperfusion injury[J]. PLoS One, 2019, 14(12):e0227097. doi: 10.1371/journal.pone.0227097. [百度学术]
Cui P, Xin H, Yao Y, et al. Human amnion-derived mesenchymal stem cells alleviate lung injury induced by white smoke inhalation in rats[J]. Stem Cell Res Ther, 2018, 9(1):101. doi: 10.1186/s13287-018-0856-7. [百度学术]
Nanchal RS, Truwit JD. Recent advances in understanding and treating acute respiratory distress syndrome[J]. F1000Res, 2018, 7:F1000 Faculty Rev-1322. doi: 10.12688/f1000research.15493.1. [百度学术]
宋磊, 高明. 胸腔积液联合血清MCP-1、sTREM-1对急性胰腺炎严重程度的早期评估价值[J]. 中国普通外科杂志, 2019, 28(3):299-305. doi:10.7659/j.issn.1005-6947.2019.03.008. [百度学术]
Song L, Gao M. Value of pleural effusion combined with serum MCP-1 and sTREM-1 detection in early predicting the severity of acute pancreatitis[J]. Chin J Gen Surg, 2019, 28(3):299-305. doi:10.7659/j.issn.1005-6947.2019.03.008. [百度学术]
Ferrah N, Cameron P, Gabbe B, et al. Trends in the Nature and Management of Serious Abdominal Trauma[J]. World J Surg, 2019, 43(5):1216-1225. doi: 10.1007/s00268-018-04899-4. [百度学术]
Varadhan KK, Constantin-Teodosiu D, Constantin D, et al. Inflammation-mediated muscle metabolic dysregulation local and remote to the site of major abdominal surgery[J]. Clin Nutr, 2018, 37(6 Pt A):2178-2185. doi: 10.1016/j.clnu.2017.10.020. [百度学术]
Ito H, Sadatomo A, Inoue Y, et al. Role of TLR5 in inflammation and tissue damage after intestinal ischemia-reperfusion injury[J]. Biochem Biophys Res Commun, 2019, 519(1):15-22. doi: 10.1016/j.bbrc.2019.08.083. [百度学术]
Gouda MM, Bhandary YP. Acute Lung Injury: IL-17A-Mediated Inflammatory Pathway and Its Regulation by Curcumin[J]. Inflammation, 2019, 42(4):1160-1169. doi: 10.1007/s10753-019-01010-4. [百度学术]
Patel VJ, Biswas Roy S, Mehta HJ, Joo M, Sadikot RT. Alternative and Natural Therapies for Acute Lung Injury and Acute Respiratory Distress Syndrome[J]. Biomed Res Int, 2018, 2018:2476824. doi: 10.1155/2018/2476824. [百度学术]
Ahmed ME, Hamed G, Fawzy S, Taema KM. Lung injury prediction scores: Clinical validation and C-reactive protein involvement in high risk patients[J]. Med Intensiva, 2020, 44(5):267-274. doi: 10.1016/j.medin.2019.02.010. [百度学术]
Schwingshackl A, Lopez B, Teng B, et al. Hyperoxia treatment of TREK-1/TREK-2/TRAAK-deficient mice is associated with a reduction in surfactant proteins[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313(6):L1030-1046. doi: 10.1152/ajplung.00121.2017. [百度学术]
Arroyo R, Martín-González A, Echaide M, et al. Supramolecular Assembly of Human Pulmonary Surfactant Protein SP-D[J]. J Mol Biol, 2018, 430(10):1495-1509. doi: 10.1016/j.jmb.2018.03.027. [百度学术]
Jiaravuthisan P, Maeda A, Takakura C, et al. A membrane-type surfactant protein D (SP-D) suppresses macrophage-mediated cytotoxicity in swine endothelial cells[J]. Transpl Immunol, 2018, 47:44-48. doi: 10.1016/j.trim.2018.02.003. [百度学术]
Mackay RA, Townsend JP, Calvert J, et al. Increased surfactant protein-D levels in the airways of preterm neonates with sepsis indicated responses to infectious challenges[J]. Acta Paediatr, 2019, 108(5):870-876. doi: 10.1111/apa.14630. [百度学术]
Gao Y, Wang Z, Jiang F, et al. Can apneic oxygen insufflation become a novel lung protective ventilation strategy? A randomized, controlled, blinded, single center clinical trial[J]. BMC Anesthesiol, 2018, 18(1):186. doi: 10.1186/s12871-018-0652-z. [百度学术]
Ye S, Li Q, Yuan S, et al. Restrictive Fluid Resuscitation Leads to Better Oxygenation than Non-Restrictive Fluid Resuscitation in Piglets with Pulmonary or Extrapulmonary Acute Respiratory Distress Syndrome[J]. Med Sci Monit, 2015, 21:2008-2020. doi: 10.12659/MSM.892734. [百度学术]
Ujma S, Horsnell WG, Katz AA, Clark HW, Schäfer G. Non-Pulmonary Immune Functions of Surfactant Proteins A and D[J]. J Innate Immun, 2017, 9(1):3-11. doi: 10.1159/000451026. [百度学术]
Liu H, Hao J, Wu C, et al. Eupatilin Alleviates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Inflammation and Oxidative Stress[J]. Med Sci Monit, 2019, 25:8289-8296. doi: 10.12659/MSM.917406. [百度学术]
Pinkerton JW, Kim RY, Robertson AAB, et al. Inflammasomes in the lung[J]. Mol Immunol, 2017, 86:44-55. doi: 10.1016/j.molimm.2017.01.014. [百度学术]
Meng X, Xu H, Dang Y, et al. Hyperoxygenated Hydrogen-Rich Solution Suppresses Lung Injury Induced by Hemorrhagic Shock in Rats[J]. J Surg Res, 2019, 239:103-114. doi: 10.1016/j.jss.2019.01.050. [百度学术]
Mahmutovic Persson I, Menzel M, Ramu S, et al. IL-1β mediates lung neutrophilia and IL-33 expression in a mouse model of viral-induced asthma exacerbation[J]. Respir Res, 2018, 19(1):16. doi: 10.1186/s12931-018-0725-z. [百度学术]
Jia X, Cao B, An Y, et al. Rapamycin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting IL-1β and IL-18 production[J]. Int Immunopharmacol, 2019, 67:211-219. doi: 10.1016/j.intimp.2018.12.017. [百度学术]
Kong F, Sun Y, Song W, et al. MiR-216a alleviates LPS-induced acute lung injury via regulating JAK2/STAT3 and NF-κB signaling[J]. Hum Cell, 2020, 33(1):67-78. doi: 10.1007/s13577-019-00289-7. [百度学术]
Zheng DY, Zhou M, Jin J, et al. Inhibition of P38 MAPK Downregulates the Expression of IL-1β to Protect Lung from Acute Injury in Intestinal Ischemia Reperfusion Rats[J]. Mediators Inflamm, 2016, 2016:9348037. doi: 10.1155/2016/9348037. [百度学术]