摘要
目前对主动脉夹层的发病机制及发展规律并未完全明确,但已有大量的研究表明血流动力学因素对主动脉夹层的产生与发展有着重要影响。本研究采用计算流体力学的方法研究无夹层及夹层发展不同时期血流动力学参数的变化规律,旨在从流体动力学的角度探究夹层的产生与发展规律。
根据B型主动脉夹层患者的主动脉尺寸数据,通过三维建模软件Pro/E构建出无夹层及夹层发展不同时期的理想化主动脉模型,利用Workbench平台完成双向流固耦合仿真,分析血流速度、压力、血管壁Von Mise应力等血流动力学参数的变化规律。
加速射血期内,有夹层存在时,血液的最大流速增加了0.6 m/s左右,同时假腔内的血液流动状态随着夹层的发展更加复杂;最大血液压力增加了0.3~0.6 kPa左右,同时升主动脉入口外侧壁的高血压区域也有所扩大;血管壁的最大Von Mise应力的峰值及波动性随着夹层的发展而增大,并且最大Von Mise应力主要位于夹层撕裂处、假腔侧壁与外壁等部位。
主动脉夹层(aortic dissection,AD)也被称为主动脉夹层动脉瘤,是指主动脉内膜在各种因素的作用下被撕裂,血液从撕裂处涌入主动脉中膜,导致中膜分离,并且顺着血管壁延伸方向不断扩张,最终形成两个血管腔的疾
研
基于血流动力学因素对主动脉夹层产生的重要影响,本文通过三维建模软件Pro/E,构建出模拟无夹层及假腔破裂前夹层发展初期至末期的理想主动脉模型,利用计算流体力学的方法对其进行双向流固耦合仿真,对比无夹层与夹层发展不同时期血流动力学参数的变化规律,从流体动力学的角度探究夹层的产生及发展规律。
本研究以厦门大学附属心血管1例B型主动脉患者的计算机断层扫描图像为原始数据,如

图1 B型主动脉夹层患者CT图像
Figure 1 CT images of a patient with type B aortic dissection
根据逆向重构个性化主动脉模型的尺寸,构建无夹层时期的理想化主动脉模型(

图2 无夹层主动脉示意图 A:个性化模型;B:理想化模型;C:理想化模型尺寸示意图
Figure 2 The schematic diagram of aorta without aortic dissection A: Patient-specific model; B: Ideal model; C:The size of idealized model

图3 夹层发展不同阶段主动脉模型图 A:夹层初期;B:夹层中期;C:夹层末期;D:夹层第一破口位置及不同发展时期假腔大小对比示意图
Figure 3 The aorta model in different development periods of aortic dissection A: Early stage; B: Middle stage; C: Late stage; D: The location of the first tear and the size of false lumen in different development periods
参照文
的分段函数进行拟合。3根分支血管及降主动脉流,很少有湍流的情况,因此设定血液的流动状态为层

图4 仿真边界条件的设置 A:边界名称及边界条件;B:V(t)波形图
Figure 4 Setting of simulation boundary conditions A: Boundary names and conditions; B: Waveform of V(t)
提取加速射血期内(T1=0.04 s)过假腔入口对称截面血液速度、压力,血管壁Von Mise应力的仿真结果及一个心动周期内夹层发展不同时期血管壁最大Von Mise随时间的变化曲线进行分析,仿真结果提取时刻如

图5 仿真结果提取时刻示意图
Figure 5 The exaction time of the simulation results
夹层的存在对真腔内血液流动状态的无显著影响。但有夹层存在时,血液的最大流速增加了0.6 m/s左右,并且最大流速位于3支分支血管处。同时,假腔内血液的流动状态随着夹层的发展变得更加复杂。夹层初期,假腔内只在靠近夹层上撕裂处形成一个漩涡。夹层中期,假腔内靠近夹层上撕裂处的涡流增大,同时第一破口处逐渐形成第二涡流。夹层末期,假腔内靠近夹层上撕裂处及第一破口处都形成了巨大的涡流(

图6 加速射血期(T1=0.04 s)过假腔入口对称截面血液速度流线图 A:无夹层;B:夹层初期;C:夹层中期;D:夹层末期
Figure 6 Blood velocity streamline of the symmetrical section which across the entrance of the false lumen at accelerated ejection period (T1=0.04 s) A: No dissection stage; B: Early dissection stage; C: Middle dissection stage; D: Late dissection stage
无论是否存在夹层,血液压力都呈现由升主动脉至降主动脉逐渐递减的趋势,并且升主动脉入口外侧的高压区域大于内侧,但有夹层存在时,血液最高压力增大了0.3~0.6 kPa左右,同时升主动脉入口外侧的高压范围扩大至主动脉弓外弯侧,在3支分支血管分叉处也出现了一些小范围的高压区。此外,有夹层存在时,假腔内的压力都大于与之相邻的真腔内的压力(

图7 加速射血期(T1=0.04 s)过假腔入口对称截面血液压力云图 A:无夹层;B:夹层初期;C:夹层中期;D:夹层末期
Figure 7 Blood pressure nephogram of the symmetrical section which across the entrance of the false lumen at accelerated ejection period (T1=0.04 s) A: No dissection stage; B: Early dissection stage; C: Middle dissection stage; D: Late dissection stage
无夹层时,血管壁的Von Mise应力同样呈现出由升主动脉至降主动脉逐渐递减的趋势,并且升主动脉入口及3支分支血管的根部都出现了应力集中现象。有夹层存在时,血管壁的最大Von Mise应力随着夹层的发展而增大,并且比无夹层存在时增大了一个数量级。此外,有夹层存在时,应力集中区域随着也夹层的发展而逐渐增多、增大。夹层初期,假腔撕裂处也出现了应力集中现象;夹层中期,假腔壁侧壁中部、假腔撕裂及与之相邻的真腔壁都出现了应力集中现象;夹层末期,假腔外壁也出现了应力集中现象(

图8 加速射血期(T1=0.04 s)血管壁Von Mise应力云图 A:无夹层;B:夹层初期;C:夹层中期;D:夹层末期
Figure 8 The nephogram of Von Mise stress of blood vessel at accelerated ejection period (T1=0.04 s) A: No dissection stage; B: Early dissection stage; C: Middle dissection stage; D: Late dissection stage

图9 夹层发展不同时期壁面最大Von Mise应力随时间的变化曲线
Figure 9 The change curves of blood vessel maximum Von Mise stress with time in different development stages of aortic dissection
本研究构建了无夹层及夹层发展不同时期的理想化主动脉模型并进行双向流固耦合仿真分析。结果表明,加速射血期内,有夹层存在时,血液的最大流速增加了约0.6 m/s,最大流速出现在分支血管处,血液最大压力增加了0.3~0.6 kPa,同时升主动脉入口外侧壁的高血压区域也有所扩大。结合加速射血期内过假腔入口速度流线及压力分布图分析,这可能是由于有假腔存在时,假腔内的压力大于与之相邻的真腔内的压力,假腔压迫真腔造成的。Wang
仿真结果还表明,有夹层存在时,血管壁的最大Von Mise应力的峰值及波动性都随着夹层的发展而增大,应力集中区域也随着夹层的发展而增多、增大,并且主要位于夹层撕裂处及假腔侧壁等部位。血管壁的Von Mise应力值越高,表明该处血管壁产生夹层及破裂的可能性更
参考文献
戚悠飞, 舒畅, 罗明尧, 等. 主动脉夹层患者升主动脉中层弹性蛋白与弹力纤维的变化[J]. 中国普通外科杂志, 2017, 26(6):729-734. doi:10.3978/j.issn.1005-6947.2017.06.010. [百度学术]
Qi YF, Shu C, Luo MY, et al. Alterations of elastin and elastic fibers in tunica media of ascending aorta in patients with aortic dissection[J]. Chinese Journal of General Surgery, 2017, 26(6):729-734. doi:10.3978/j.issn.1005-6947.2017.06.010. [百度学术]
王进, 刘一帆, 王利, 等. 主动脉夹层研究进展[J]. 实用医院临床杂志, 2016, 13(4):209-211. doi:10.3969/j.issn.1672-6170.2016.04.074. [百度学术]
Wang J, Liu YF, Wang L, et al. Research progress of aortic dissection[J]. Practical Journal of Clinical Medicine, 2016, 13(4):209-211. doi:10.3969/j.issn.1672-6170.2016.04.074. [百度学术]
Daily PO, Trueblood HW, Stinson EB, et al. Management of acute aortic dissections[J]. Ann Thorac Surg, 1970, 10(3):237-247. doi: 10.1016/s0003-4975(10)65594-4. [百度学术]
朱泓樵, 李逸明, 周建, 等. 炎症反应参与主动脉夹层临床转归的研究进展[J]. 中国普通外科杂志, 2020, 29(12):1509-1514.doi:10.7659/j.issn.1005-6947.2020.12.013. [百度学术]
Zhu HQ, Li YM, Zhou J, et al. Recent advances in relationship between inflammatory reactions and clinical outcomes of aortic dissection[J]. Chinese Journal of General Surgery, 2020, 29(12):1509-1514. doi:10.7659/j.issn.1005-6947.2020.12.013. [百度学术]
林长泼, 符伟国. 主动脉夹层的治疗进展[J]. 中国普通外科杂志, 2016, 25(6):790-794. doi:10.3978/j.issn.1005-6947.2016.06.002. [百度学术]
Lin CP, Fu WG. Advances in treatment of aortic dissection[J]. Chinese Journal of General Surgery, 2016, 25(6):790-794. doi:10.3978/j.issn.1005-6947.2016.06.002. [百度学术]
张健, 景在平. 主动脉夹层病因学分析[J].外科理论与实践, 2007, 12(1):84-86. doi:10.3969/j.issn.1007-9610.2007.01.027. [百度学术]
Zhang J, Jing ZP. Etiology of aortic dissection[J]. Journal of Surgery Concepts & Practice, 2007, 12(1):84-86. doi:10.3969/j.issn.1007-9610.2007.01.027. [百度学术]
赵金龙, 付亮, 倪寅凯, 等. 急性Stanford A型主动脉夹层的外科治疗现状及研究进展[J]. 临床外科杂志, 2017, 25(5):340-342. doi:10.3969/j.issn.1005-6483.2017.05.006. [百度学术]
Zhao JL, Fu L, Ni YK, et al. Surgical treatment status and research progress of acute Stanford Type A aortic dissection[J]. Journal of Clinical Surgery, 2017, 25(5):340-342. doi:10.3969/j.issn.1005-6483.2017.05.006. [百度学术]
中国医师协会心血管外科分会大血管外科专业委员会. 主动脉夹层诊断与治疗规范中国专家共识[J]. 中华胸心血管外科杂志, 2017, 33(11):641-654. doi:10.3760/cma.j.issn.1001-4497.2017.11.001. [百度学术]
The Committee of Great Vascular Surgery and Cardiovascular Surgery, Chinese Medical Association. Chinese experts' consensus of standardized diagnosis and treatment for aortic dissection[J]. Chinese Journal of Thoracic and Cardiovascular Surgery, 2017, 33(11):641-654. doi:10.3760/cma.j.issn.1001-4497.2017.11.001. [百度学术]
曾昭凡, 李振振, 吴鸿飞, 等 . HMGB1与RAGE水平在急性主动脉夹层肺损伤患者中的变化及临床意义[J]. 中国普通外科杂志, 2018, 27(12):1577-1582. doi:10.7659/j.issn.1005-6947.2018.12.013. [百度学术]
Zeng ZF, Li ZZ, Wu HF, et al. Changes in HMGB1 and RAGE levels in patients with lung injury induced by acute aortic dissection and the clinical significance[J]. Chinese Journal of General Surgery, 2018, 27(12):1577-1582. doi:10.7659/j.issn.1005-6947.2018.12.013. [百度学术]
Di Credico G. The International Registry of Acute Aortic Dissection (IRAD): New insights on aortic dissection[J]. Ital Heart J Suppl, 2000, 1(7):943-944. [百度学术]
王暾, 舒畅. 腹主动脉夹层的诊断和治疗现状[J]. 中国普通外科杂志, 2020, 29(6):649-653. doi:10.7659/j.issn.1005-6947.2020.06.002. [百度学术]
Wang T, Shu C. Current status of diagnosis and treatment of abdominal aortic dissection[J]. Chinese Journal of General Surgery, 2020, 29(6):649-653. doi:10.7659/j.issn.1005-6947.2020.06.002. [百度学术]
MacSweeney ST, Powell JT, Greenhalgh RM. Pathogenesis of abdominal aortic aneurysm[J]. Br J Surg, 1994, 81(7):935-941. doi: 10.1002/bjs.1800810704. [百度学术]
侯杨峰, 杨文玲. 主动脉夹层发病机制研究的新进展[J]. 心血管病学进展, 2018, 39(5):847-851. doi:10.16806/j.cnki.issn.1004-3934.2018.05.041. [百度学术]
Hou YF, Yang WL. New Research Progress in Pathogenesis of Aortic Dissection[J]. Advances in Cardiovascular Diseases, 2018, 39(5):847-851. doi:10.16806/j.cnki.issn.1004-3934.2018.05.041. [百度学术]
张耀楠, 张慧娥, 尹慧平. 基于Carreau模型的主动脉弓血流动力学特性分析[J]. 医疗卫生装备, 2018, 39(10):1-5. doi:10.7687/j.issn1003-8868.2018.10.001. [百度学术]
Zhang YN, Zhang HE, Yin HP. Hemodynamic analysis of aortic arch based on Carreau model[J]. Chinese Medical Equipment Journal, 2018, 39(10):1-5. doi:10.7687/j.issn1003-8868.2018.10.001. [百度学术]
Mata KM, Tefe-Silva C, Fernandes CR, et al. Pathogenesis of Abdominal Aortic Aneurysms[M]. Aortic Aneurysms: Risk Factors, Diagnosis, Surgery & Repair, 2013. [百度学术]
Traub O, Berk BC. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force[J]. Arterioscler Thromb Vasc Biol, 1998, 18(5):677-685. doi: 10.1161/01.atv.18.5.677. [百度学术]
叶仕高, 刘永春. 主动脉夹层的治疗研究进展[J]. 中国医学创新, 2019, 16(12):169-172. doi:10.3969/j.issn.1674-4985.2019.12.044. [百度学术]
Ye SG, Liu YC. Advances in Treatment of Aortic Dissection[J]. Medical Innovation of China, 2019, 16(12):169-172. doi:10.3969/j.issn.1674-4985.2019.12.044. [百度学术]
Jing ZP, Feng X, Bao JM, et al. Endovascular graft exclusion for descending thoracic aortic dissections[J]. Journal of Medical Colleges of PLA, 2000, 15(1):7-9. [百度学术]
曾宇杰. 胸主动脉夹层血液两相流动数值模拟[D]. 杭州: 浙江大学, 2017. [百度学术]
Zeng YJ. Numerical simulation of two-phase blood flow in thoracic aortic dissection[D]. Zhejiang University, 2017. [百度学术]
赵国林. 基于人体血管B型主动脉夹层三维建模及血流动力学仿真研究[D]. 南宁:广西大学, 2019. [百度学术]
Zhao GL. Three dimension modeling and hemodynamic simulation of 3d modeling and hemodynamic simulation of human vascular B-aortic dissection type B aortic dissection based on 3d modeling and hemodynamic simulation of human vessel[D]. Nanning: Guangxi University, 2019. [百度学术]
Tremmel M, Dhar S, Levy EI, et al. Influence of intracranial aneurysm-to-parent vessel size ratio on hemodynamics and implication for rupture: results from a virtual experimental study[J]. Neurosurgery, 2009, 64(4):622-630. doi: 10.1227/01.NEU.0000341529.11231.69. [百度学术]
Ashkan J, Babak F, Mehrdad B, et al. Fluid-structure interaction investigation of spiral flow in a model of abdominal aortic aneurysm[J]. Eur J Mech B-Fluid, 2014, 46:109-117. doi: 10.1016/j.euromechflu.2014.02.011. [百度学术]
Wen CY, Yang AS, Tseng LY, et al. Investigation of Pulsatile Flowfield in Healthy Thoracic Aorta Models[J]. Ann Biomed Eng, 2010, 38(2):391-402. doi: 10.1007/s10439-009-9835-6. [百度学术]
Beller CJ, Labrosse MR, Thubrikar MJ, et al. Role of aortic root motion in the pathogenesis of aortic dissection[J]. Circulation, 2004, 109(6):763-769. doi: 10.1161/01.CIR.0000112569.27151.F7. [百度学术]
Wang WQ, Yan Y, Zhang CL. Numerical simulation of blood pulsatile flow in a DeBakey III type of TVD[J]. Journal of Beijing University of Technology, 2012, 38(6):949-954. [百度学术]
张国威, 王文全, 庆开雄, 等. 个性化主动脉夹层的血流动力学数值仿真研究[J]. 中国血管外科杂志:电子版, 2019, 11(1):37-40. doi:10.3969/j.issn.1674-7429.2019.01.010. [百度学术]
Zhang GW, Wang WQ, Qing KX, et al. The hemodynamics simulation of a patient-specific aortic dissection[J]. Chinese Journal of Vascular Surgery: Electronic Version, 2019, 11(1):37-40. doi:10.3969/j.issn.1674-7429.2019.01.010. [百度学术]
Wang H, Liu J, Zheng X, et al. Three-dimensional virtual surgery models for percutaneous coronary intervention (PCI) optimization strategies[J]. Sci Rep, 2015, 5:10945. doi: 10.1038/srep10945. [百度学术]
景在平, 梅志军. 针对腔内隔绝术的主动脉夹层分型的探讨[J]. 中华外科杂志, 2005, 43(13):894-895. doi:10.3760/j:issn:0529-5815.2005.13.019. [百度学术]
Jing ZP, Mei ZJ. Classification of aortic dissection according to endovascular exclusion[J]. Chinese Journal of Surgery, 2005, 43(13):894-895. doi:10.3760/j:issn:0529-5815.2005.13.019. [百度学术]
邱霖, 岑人经. 有锥度角的主动脉弓血液脉动流数值分析[J]. 医用生物力学, 2004, 19(2):74-78. [百度学术]
Qiu L, Cen RJ. Numerical Simulation of Pulsating Blood Flow in the Aortic Arch with Tapered Angle[J]. Journal of Medical Biomechanics, 2004, 19(2):74-78. [百度学术]
Sun Z, Xu L. Computational fluid dynamics in coronary artery disease[J]. Comput Med Imaging Graph, 2014, 38(8):651-663. doi: 10.1016/j.compmedimag.2014.09.002. [百度学术]