摘要
肝脏缺血-再灌注(I/R)损伤是肝移植和肝切除手术过程中常涉及的共同病理生理变化。竞争性内源性RNA(ceRNA)调控网络可参与多种疾病的发生发展。然而ceRNA网络在肝脏I/R损伤中的功能仅有少量报道。本研究旨在应用生物信息学方法构建与肝脏I/R损伤相关的ceRNA网络,同时基于差异表达基因筛选潜在治疗药物。
从GEO数据库获取肝脏I/R损伤的mRNA及miRNA表达芯片数据。使用R语言中的limma包进行基因差异表达分析,并使用ggplot2包进行散点图、火山图和热图绘制。使用String数据库及Cytoscape软件进行蛋白互作(PPI)网络构建。利用Metascape数据库对筛选出的差异mRNA进行GO/KEGG功能富集分析。通过转录调控网络数据库分析可能调控这些差异基因的转录因子。使用miRTarBase数据库构建miRNA-差异表达基因网络。通过starBase:ceRNA数据库构建ceRNA网络。使用比较毒物基因组学数据库(CTD)筛选对关键差异基因表达具有潜在作用的天然药物。
从GEO数据库获得2个肝脏I/R损伤mRNA数据集(GSE10654和GSE117066)和1个肝脏I/R损伤miRNA数据集(GSE72315)。通过limma包及Venn图分析mRNA表达数据集,筛选到16个在I/R组上调表达,在缺血后适应(IPO)组下调表达的基因;7个在I/R组下调表达,在IPO组上调表达的基因。GO/KEGG功能富集分析结果显示差异基因主要参细胞死亡的正调控及对细胞外刺激反应的生物学过程,并参与MAPK信号通路。转录调控网络数据库分析获得6个转录因子(Trp53、Cebpb、Crebbp、Fos、Nfkb1及SP1)可能参与这些差异基因的调控。通过miRTarBase数据库分析,并结合GSE72315数据集中miRNA在I/R损伤后的差异表达,获得两个可能在肝脏I/R损伤中发挥重要的作用miRNA-mRNA轴(mmu-miR-32-5p-Btg2与mmu-miR-9-5p-Mt2)。通过starBase:ceRNA数据库分析,最终获得9条ceRNA网络,分别是:XIST/MEG8/LINC00963/MALAT1-miR-32-5p-Btg2轴、XIST/NEAT1-miR-132-3p-Btg2轴及HSPA9P1/RALGAPA1P1/RPS26P39-miR-9-5p-Dusp6轴。CTD数据库筛选到7种植物药(槲皮素、白藜芦醇、染料木黄酮、香豆雌酚、姜黄素、辣椒素及东莨菪碱)可降低关键基因的表达发挥潜在治疗作用。
关键词

肝脏缺血-再灌注(ischemia/reperfusion,I/R)损伤是肝组织经过一段时间缺血后,再恢复血液灌注时触发一系列复杂级联反应导致肝损伤进一步加重的病理生理过
肝脏I/R损伤的发生机制十分复杂,可能与活性氧产生、细胞凋亡、钙离子超载及大量炎性细胞浸润导致的炎性反应有关,这些机制在肝脏缺血的过程中开始出现,并在血液再灌注后进一步加
从GEO(Gene Expression Omnibus)数据库中按照以下标准获取肝脏I/R损伤的基因芯片数据:以“hepatic ischemia/reperfusion injury”为关键词;选择物种为“Mus musculus”、研究类型为“expression profiling by array”两个过滤条件进一步筛选数据;最后选定I/R组织样本数、缺血后适应(IPO)组织样本数与假手术对照组织样本数均≥3的芯片。根据筛选结果,获得Zhang
使用GEO数据库下载表达谱数据,并使用R语言中的limma包进行数据分析。删去数据集中没有注释的探针,并对一个基因的多个探针取最大值。使用R语言中的ggplot2包进行总基因散点图和火山图绘制。以|logFC|>1.0、P<0.05为筛选条件进行差异mRNA的筛选,使用R语言中的ggplot2包进行差异mRNA热图绘制。
利用Metascape数据库对筛选出的差异mRNA进行GO/KEGG功能富集分析,得到这些差异mRNA主要参与的生物学过程,P<0.05为有统计学意义。
使用String数据库及Cytoscape软件进行蛋白互作(protein-protein interaction,PPI)网络构建。首先使用String数据库(https://string-db.org/)对差异mRNA进行构建蛋白互作网络,选取combined score >0.4的蛋白互作关系对导入Cytoscape 3.8.0软件进行网络可视化。
使用miRTarBase数据库(http://mirtarbase.cuhk.edu.cn/php/index.php)检索靶向关键差异基因的miRNA。使用starBase:ceRNA数据库(http://starbase.sysu.edu.cn/ceRNA.php?source=mRNA)构建ceRNA网络。
使用比较毒物基因组学数据库(Comparative Toxicogenomics Database,CTD,http://ctdbase.org/)筛选对关键差异基因表达具有潜在作用的药物。参数设定如下:Analyze选择Batch Query;input type选择Genes;Chemical-gene interactions选择expression。
GSE10654数据集共包括14 685个蛋白编码基因芯片数据,GSE117066数据集共包括10 976个蛋白编码基因芯片数据。总基因散点图结果显示I/R组与假手术组相比,GSE10654数据集中明显上调基因有52个,下调基因有62个(|logFC|>1.0,P<0.05)(

图1 GSE10654与GSE117066数据集基因表达情况 A-B:GSE10654与GSE117066数据集总基因散点图(红色表示基因上调,蓝色表示基因下调);C-D:GSE10654与GSE117066数据集总基因火山图
Figure 1 Gene expressions in GSE10654 and GSE117066 datasets A-B: Scatter plot of total genes in GSE10654 and GSE117066 datasets (red color standing for up-regulation of genes, blue color standing for down-regulation of genes); C-D: Total gene volcano map of GSE10654 and GSE117066 datasets

图2 GSE10654与GSE117066数据集差异基因的表达情况 A:GSE10654与GSE117066上调或下调基因的Venn图分析;B:GSE10654与GSE117066数据集共同上调或下调基因的表达情况
Figure 2 The expressions of differential genes between GSE10654 and GSE117066 datasets A: Venn diagram analysis of up-regulated or down-regulated genes between GSE10654 and GSE117066; B: The expression of co-up-regulated or co-down-regulated genes in the GSE10654 and GSE117066 datasets
为确定与假手术组相比,I/R组差异表达基因的功能,进一步分析了GSE117066数据集中IPO组与I/R组中基因的表达变化。总基因散点图结果显示IPO组与I/R组相比,GSE117066数据集中显著上调基因有283个,下调基因有242个(|logFC|>1.0,P<0.05)(

图3 与I/R损伤相关的差异基因PPI网络可视化分析 A:GSE117066数据集总基因散点图(红色表示基因上调,蓝色表示基因下调);B:GSE117066数据集总基因火山图;C:Venn图分析;D:PPI网络可视化分析
Figure 3 V isualized analysis of PPI network of differential genes related to I/R injury A: Scatter plot of the total genes in the GSE117066 dataset (red color standing for up-regulation of genes, blue color standing for down-regulation of genes); B: Total gene volcano map of GSE117066 dataset; C: Venn diagram analysis; D: PPI network visualization analysis
利用Metascape对PPI网络中的18个差异表达基因进行GO/KEGG功能富集分析,GO功能富集分析结果显示,在生物学过程(biological processes)方面,主要参与细胞死亡的正调控及对细胞外刺激的反应。KEGG通路富集结果显示:差异基因主要参与MAPK信号通路。GO/KEGG富集分析网络图如

图4 与I/R损伤相关的差异基因功能富集分析 A:GO/KEGG功能富集分析;B:转录因子富集分析
Figure 4 Function enrichment analysis of differentially expressed genes related to I/R injury A: GO/KEGG function enrichment analysis; B: Transcription factor enrichment analysis
PPI网络中的关键基因在体内的异常表达可能是肝脏I/R损伤发生发展的重要因素。基因的表达水平在真核生物体中主要受转录后调控,而miRNA作为一类由内源基因编码的长度约为22个核苷酸的非编码单链RNA分子,其可通过靶向mRNA的3'UTR(非编码区)区抑制mRNA翻译或使其发生降解从而发挥转录后调控作用。miRTarBase数据库作为一个专门收集有实验证据支持的miRNA-mRNA靶向关系的数据库,通过对PPI网络中的18个差异表达基因进行预测分析,获得与I/R损伤相关基因互作的miRNA(

图5 与I/R损伤相关的差异miRNA A:与差异基因结合的miRNA网络分析;B:miRNA在I/R组中的表达;C:与I/R损伤相关miRNA网络
Figure 5 Differentially expressed miRNAs related to I/R injury A: Analysis of miRNA networks combined with differentially expressed genes; B: Expressions of miRNA in I/R group; C: The miRNA network associated with I/R injury
长链非编码RNA(lncRNA)是长度>200 bp,不编码蛋白质的内源性RNA分子。近年来的研究表明,lncRNA可以作为一种ceRNA吸附miRNA,参与靶基因的表达调控。鉴于miR-132-3p、miR-223-3p、miR-32-5p、miR-790及miR-9-5p在人与小鼠中序列的保守性,通过starBase:ceRNA数据库分析可调控PPI网络中的18个差异基因表达的ceRNA网络,获得9条ceRNA网络,分别是:XIST/MEG8/LINC00963/MALAT1-miR-32-5p-Btg2、XIST/NEAT1-miR-132-3p-Btg2、HSPA9P1/RALGAPA1P1/RPS26P39-miR-9-5p-Dusp6(

图6 与I/R损伤相关的ceRNA网络
Figure 6 The ceRNA network associated with I/R injury
在比较毒物基因组学数据库(comparative toxicogenomics database,CTD)中检索能够减少PPI网络中关键基因表达的天然植物药,并构建药物分子和靶点之间网络关系,共获得7种天然药物分别是槲皮素(quercetin,ID:D011794)、白藜芦醇(resveratrol,ID:D000077185)、染料木黄酮(genistein,ID:D019833)、香豆雌酚(coumestrol,ID:D003375)、姜黄素(curcumin,ID:D003474)、辣椒素(capsaicin,ID:D002211)及东莨菪碱(scopolamine,ID:D012601)(

图7 与I/R损伤治疗相关的药物-靶点网络 (▲表示药物,⚪表示靶点,红色直线表示下调表达,绿色虚线表示上调表达)
Figure 7 Drug-target network related to I/R injury treatment (▲ standing for drug, ⚪ standing for target, the red straight line standing for the down-regulated expression, and the green dashed line standing for up-regulated expression)
肝脏I/R损伤是多因素共同导致的复杂病理生理过程,可引起肝功能损害甚至衰竭,影响肝移植和肝切除等肝脏手术的预
目前报道的肝脏I/R损伤发生机制包括:无氧代谢、钙离子超载、氧化应激反应、线粒体结构功能的损坏、库普细胞激活和中性粒细胞的活化聚集、细胞因子作用、细胞凋亡与细胞自噬
ceRNA调控网络可在转录后水平实现对肝脏I/R损伤关键mRNA的调控,但这些关键mRNA的表达同样受转录水平的调控。转录因子作为一类DNA结合蛋白,可与基因启动子结合,实现对靶基因的调控。在本研究中,通过TRRUST转录调控网络数据库分析获得6个与肝脏I/R损伤相关的转录因子,分别是:Trp53、Cebpb、Crebbp、Fos、Nfkb1及SP1。其中Trp53也称为p53,是一种重要的肿瘤抑制基因,其介导的细胞信号转导途径在调节细胞正常生命活动中起重要作用。Fos蛋白作为一类核蛋白转录因子,在调控细胞生长、分裂、增殖、分化乃至程序性死亡等方面具有重要的作用。Nfkb1也称为p50,与RelA(p65)形成p50/RelA二聚体,参与NF-кB经典信号通路的激活。在肝脏I/R损伤中的研究表明,Trp53、Fos及Nfkb1可调控细胞凋亡、自噬及炎症等参与肝脏I/R损
天然药物作为一种自然界中存在的有药理活性的天然产物,一般地讲,其副作用比人工合成的化学药物要小的多,但也有些天然药物毒性较大。目前,多种天然药物及化学药物已报道可显著改善肝脏I/R损
综上所述,本研究通过生物信息学方法构建肝脏I/R损伤过程中的关键ceRNA网络,并筛选潜在治疗药物。同时本研究也具有一定的局限性,主要基于鼠类肝脏缺血再灌注的相关数据进行挖掘,与人类基因的相关表达可能有较大差异,同时获得的ceRNA网络及潜在天然药物缺乏临床数据及实验数据的验证。但本研究可对未来进一步深入了解肝脏I/R损伤的分子机制提供重要指导作用,并对未来临床治疗提供更多依据。
参考文献
Soares ROS, Losada DM, Jordani MC, et al. Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies[J]. Int J Mol Sci, 2019, 20(20):5034. doi: 10.3390/ijms20205034. [百度学术]
Cannistrà M, Ruggiero M, Zullo A, et al. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers[J]. Int J Surg, 2016, 33(Suppl 1):S57-70. doi: 10.1016/j.ijsu.2016.05.050. [百度学术]
van Riel WG, van Golen RF, Reiniers MJ, et al. How much ischemia can the liver tolerate during resection?[J]. Hepatobiliary Surg Nutr, 2016, 5(1):58-71. doi: 10.3978/j.issn.2304-3881.2015.07.05. [百度学术]
Smyrniotis VE, Kostopanagiotou GG, Contis JC, et al. Selective hepatic vascular exclusion versus Pringle maneuver in major liver resections: prospective study[J]. World J Surg, 2003, 27(7):765-769. doi: 10.1007/s00268-003-6978-8. [百度学术]
Abu-Amara M, Yang SY, Tapuria N, et al. Liver ischemia/reperfusion injury: processes in inflammatory networks--a review[J]. Liver Transpl, 2010, 16(9):1016-1032. doi: 10.1002/lt.22117. [百度学术]
周艳, 陈超, 杨竹林, 等. 长链非编码RNA在肝细胞性肝癌中的作用[J]. 中国普通外科杂志, 2021, 30(3):349-356. doi:10.7659/j.issn.1005-6947.2021.03.014. [百度学术]
Zhou Y, Chen C, Yang ZL, et al. The role of long non-coding RNAs in hepatocellular carcinoma[J]. Chinese Journal of General Surgery, 2021, 30(3):349-356. doi:10.7659/j.issn.1005-6947.2021.03.014. [百度学术]
Ying D, Zhou X, Ruan Y, et al. LncRNA Gm4419 induces cell apoptosis in hepatic ischemia–reperfusion injury via regulating the miR-455-SOX6 axis[J]. Biochem Cell Biol, 2020, 98(4):474-483. doi: 10.1139/bcb-2019-0331. [百度学术]
Dai B, Qiao L, Zhang M, et al. lncRNA AK054386 functions as a ceRNA to sequester miR-199 and induce sustained endoplasmic reticulum stress in hepatic reperfusion injury[J]. Oxid Med Cell Longev, 2019, 2019:8189079. doi: 10.1155/2019/8189079. [百度学术]
Tang B, Bao N, He G, et al. Long noncoding RNA HOTAIR regulates autophagy via the miR-20b-5p/ATG7 axis in hepatic ischemia/reperfusion injury[J]. Gene, 2019, 686:56-62. doi: 10.1016/j.gene.2018.10.059. [百度学术]
Huang X, Gao Y, Qin J, et al. The mechanism of long non‐coding RNA MEG3 for hepatic ischemia‐reperfusion: Mediated by miR‐34a/Nrf2 signaling pathway[J]. J Cell Biochem, 2018, 119(1):1163-1172. doi: 10.1002/jcb.26286. [百度学术]
Zhang P, Ming Y, Cheng K, et al. Gene Expression profiling in ischemic postconditioning to alleviate mouse liver ischemia/reperfusion injury[J]. Int J Med Sci, 2019, 16(2):343-354. doi: 10.7150/ijms.29393. [百度学术]
Huber N, Sakai N, Eismann T, et al. Age-related decrease in proteasome expression contributes to defective nuclear factor-κB activation during hepatic ischemia/reperfusion[J]. Hepatology, 2009, 49(5):1718-1728. doi: 10.1002/hep.22840. [百度学术]
Zheng W, Men H, Li J, et al. Global microRNA expression profiling of mouse livers following ischemia-reperfusion injury at different stages[J]. PLoS One, 2016, 11(2):e0148677. doi: 10.1371/journal.pone.0148677. [百度学术]
Nakazato PCG, Victorino JP, Fina CF, et al. Liver ischemia and reperfusion injury. Pathophysiology and new horizons in preconditioning and therapy[J]. Acta Cir Bras, 2018, 33(8):723-735. doi: 10.1590/s0102-865020180080000008. [百度学术]
Zhang P, Ming Y, Ye Q, et al. Comprehensive circRNA expression profile during ischemic postconditioning attenuating hepatic ischemia/reperfusion injury[J]. Sci Rep, 2019, 9(1):264. doi: 10.1038/s41598-018-36443-8. [百度学术]
Guan LY, Fu PY, Li PD, et al. Mechanisms of hepatic ischemia-reperfusion injury and protective effects of nitric oxide[J]. World J Gastrointest Surg, 2014, 6(7):122-128. doi: 10.4240/wjgs.v6.i7.122. [百度学术]
Go KL, Lee S, Zendejas I, et al. Mitochondrial Dysfunction and Autophagy in Hepatic Ischemia/Reperfusion Injury[J]. Biomed Res Int, 2015, 2015:183469. doi: 10.1155/2015/183469. [百度学术]
Amersi F, Shen XD, Anselmo D, et al. Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway[J]. Hepatology, 2002, 35(4):815-823. doi: 10.1053/jhep.2002.32467. [百度学术]
Zhang Y, Zhang H, Zhang Z, et al. LncRNA MALAT1 cessation antagonizes hypoxia/reoxygenation injury in hepatocytes by inhibiting apoptosis and inflammation via the HMGB1-TLR4 axis[J]. Mol Immunol, 2019, 112:22-29. doi: 10.1016/j.molimm. 2019. 04.015. [百度学术]
Wang L, Qu P, Yin W, et al. Lnc-NEAT1 induces cell apoptosis and inflammation but inhibits proliferation in a cellular model of hepatic ischemia/reperfusion injury[J]. J Int Med Res, 2021, 49(3):300060519887251. doi: 10.1177/0300060519887251. [百度学术]
Liao X, Zhou S, Zong J, et al. Sevoflurane exerts protective effects on liver ischemia/reperfusion injury by regulating NFKB3 expression via miR‑9‑5p[J]. Exp Ther Med, 2019, 17(4):2632-2640. doi: 10.3892/etm.2019.7272. [百度学术]
Wu H, Bai H, Duan S, et al. Downregulating Serine Hydroxymethyltransferase 2 Deteriorates Hepatic Ischemia-Reperfusion Injury through ROS/JNK/P53 Signaling in Mice[J]. Biomed Res Int, 2019, 2019:2712185. doi: 10.1155/2019/2712185. [百度学术]
Zabala V, Boylan J M, Thevenot P, et al. Transcriptional changes during hepatic ischemia-reperfusion in the rat[J]. PLoS One, 2019, 14(12):e0227038. doi: 10.1371/journal.pone.0227038. [百度学术]
Zhu J, Zhu F, Song W, et al. Altered miR-370 expression in hepatic ischemia-reperfusion injury correlates with the level of nuclear kappa B (NF-κB) related factors[J]. Gene, 2017, 607:23-30. doi: 10.1016/j.gene.2016.12.026. [百度学术]
高伟东, 冯赞杰, 彭慈军, 等. 杜仲不同部位及 不同提取方法的提取物对大鼠肝脏缺血再灌注损伤的保护作用[J]. 中国普通外科杂志, 2020, 29(8):958-965. doi:10.7659/ j.issn.1005-6947.2020. 08.006. [百度学术]
Gao WD, Feng ZJ, Peng CJ, et al. Protective effects of extracts from different parts of Eucommia ulmoides and by different extraction methods against hepatic ischemia-reperfusion injury in rats[J]. Chinese Journal of General Surgery, 2020, 29(8):958-965. doi:10.7659/ j.issn.1005-6947.2020.08.006. [百度学术]
白宁, 王栋, 欧阳锡武, 等. 苦参碱对大鼠肝缺血再灌注损伤的抑制作用及机制[J]. 中国普通外科杂志, 2018,27(1):81-86. doi:10.3978/j.issn.1005-6947.2018.01.013. [百度学术]
Bai N, Wang D, Ouyang XW, et al. Inhibitory effect of matrine against hepatic ischemia-reperfusion injury in rats and its mechanism[J]. Chinese Journal of General Surgery, 2018, 27(1):81-86. doi:10.3978/j.issn.1005-6947.2018.01.013. [百度学术]
Jang HJ, Oh MY. Eupatilin pretreatment ameliorates hepatic ischemia-reperfusion injury in mice[J]. Ann Hepatobiliary Pancreat Surg, 2021, 25(Suppl 1):S179. doi: 10.14701/ahbps.LV-PP-1-4. [百度学术]
Pan J, Chen S, Guo W, et al. Alpinetin protects against hepatic ischemia/reperfusion injury in mice by inhibiting the NF-κB/MAPK signaling pathways[J]. Int Immunopharmacol, 2021, 95:107527. doi: 10.1016/j.intimp.2021.107527. [百度学术]
Zhang S, Feng Z, Gao W, et al. Aucubin attenuates liver ischemia-reperfusion injury by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway, oxidative stress, and apoptosis[J]. Front Pharmacol, 2020, 11:544124. doi: 10.3389/fphar.2020.544124. [百度学术]
Lin J, Huang H, Yang S, et al. The effect of Ginsenoside Rg1 in hepatic ischemia reperfusion (I/R) injury ameliorates ischemia-reperfusion-induced liver injury by inhibiting apoptosis[J]. Biomed Pharmacother, 2020, 129:110398. doi: 10.1016/j.biopha. 2020. 110398. [百度学术]
Du Y, Qian B, Gao L, et al. Aloin preconditioning attenuates hepatic ischemia/reperfusion injury via inhibiting TLR4/MyD88/NF-κB signal pathway in vivo and in vitro[J]. Oxid Med Cell Longev, 2019, 2019:3765898. doi: 10.1155/2019/3765898. [百度学术]
Park HK, Kang SW, Park MS. Hesperidin ameliorates hepatic ischemia-reperfusion injury in Sprague-Dawley rats[J] Transplant Proc, 2019, 51(8):2828-2832. doi: 10.1016/j.transproceed. 2019. 02. 059. [百度学术]
Dusabimana T, Kim SR, Kim HJ, et al. Nobiletin ameliorates hepatic ischemia and reperfusion injury through the activation of SIRT-1/FOXO3a-mediated autophagy and mitochondrial biogenesis[J]. Exp Mol Med, 2019, 51(4):1-16. doi: 10.1038/s12276-019-0245-z. [百度学术]
Hua S, Ma M, Fei X, et al. Glycyrrhizin attenuates hepatic ischemia-reperfusion injury by suppressing HMGB1-dependent GSDMD-mediated kupffer cells pyroptosis[J]. Int Immunopharmacol, 2019, 68:145-155. doi: 10.1016/j.intimp. 2019. 01. 002. [百度学术]
Zaki AM, El-Tanbouly DM, Abdelsalam RM, et al. Plumbagin ameliorates hepatic ischemia-reperfusion injury in rats: role of high mobility group box 1 in inflammation, oxidative stress and apoptosis[J]. Biomed Pharmacother, 2018, 106:785-793. doi: 10.1016/j.biopha.2018.07.004.. [百度学术]
Lu Y, Kan H, Wang Y, et al. Asiatic acid ameliorates hepatic ischemia/reperfusion injury in rats via mitochondria-targeted protective mechanism[J]. Toxicol Appl Pharmacol, 2018, 338:214-223. doi: 10.1016/j.taap.2017.11.023. [百度学术]
Wang L, Li N, Lin D, et al. Curcumin protects against hepatic ischemia/reperfusion induced injury through inhibiting TLR4/NF-κB pathway[J]. Oncotarget, 2017, 8(39):65414. doi: 10.18632/oncotarget.18676. [百度学术]
Atef Y, El-Fayoumi HM, Abdel-Mottaleb Y, et al. Effect of cardamonin on hepatic ischemia reperfusion induced in rats: role of nitric oxide[J]. Eur J Pharmacol, 2017, 815:446-453. doi: 10.1016/j.ejphar.2017.09.037. [百度学术]
Li J, Zhang QH, Li S, et al. The natural product fucoidan ameliorates hepatic ischemia-reperfusion injury in mice[J]. Biomed Pharmacother, 2017, 94:687-696. doi: 10.1016/j.biopha.2017. 07.109. [百度学术]
Feng J, Zhang Q, Mo W, et al. Salidroside pretreatment attenuates apoptosis and autophagy during hepatic ischemia-reperfusion injury by inhibiting the mitogen-activated protein kinase pathway in mice[J]. Drug Des Devel Ther, 2017, 11:1989-2006. doi: 10.2147/DDDT.S136792. [百度学术]
Cai L, Li Y, Zhang Q, et al. Salidroside protects rat liver against ischemia/reperfusion injury by regulating the GSK-3β/Nrf2-dependent antioxidant response and mitochondrial permeability transition[J]. Eur J Pharmacol, 2017, 806:32-42. doi: 10.1016/j.ejphar.2017.04.011. [百度学术]
Wu L, Zhang Q, Dai W, et al. Quercetin pretreatment attenuates hepatic ischemia reperfusion-induced apoptosis and autophagy by inhibiting ERK/NF-κB pathway[J]. Gastroenterol Res Pract, 2017, 2017:9724217. doi: 10.1155/2017/9724217. [百度学术]
Akbari G, Mard SA, Dianat M, et al. The hepatoprotective and microRNAs downregulatory effects of crocin following hepatic ischemia-reperfusion injury in rats[J]. Oxid Med Cell Longev, 2017, 2017:1702967. doi: 10.1155/2017/1702967. [百度学术]
Zheng N, Liu F, Lu H, et al. Schisantherin A protects against liver ischemia-reperfusion injury via inhibition of mitogen-activated protein kinase pathway[J]. Int Immunopharmacol, 2017, 47:28-37. doi: 10.1016/j.intimp.2017.03.019. [百度学术]
Wu Y, Zhang W, Li M, et al. Nobiletin ameliorates ischemia-reperfusion injury by suppressing the function of Kupffer cells after liver transplantation in rats[J]. Biomed Pharmacother, 2017, 89:732-741. doi: 10.1016/j.biopha.2017.02.087. [百度学术]
Lin Y, Sheng M, Weng Y, et al. Berberine protects against ischemia/reperfusion injury after orthotopic liver transplantation via activating Sirt1/FoxO3α induced autophagy[J]. Biochem Biophys Res Commun, 2017, 483(2):885-891. doi: 10.1016/j.bbrc. 2017. 01.028. [百度学术]
Tsaroucha AK, Tsiaousidou A, Ouzounidis N, et al. Intraperitoneal administration of apigenin in liver ischemia/reperfusion injury protective effects[J]. Saudi J Gastroenterol, 2016, 22(6):415-422. doi: 10.4103/1319-3767.195556. [百度学术]
He D, Guo Z, Pu J L, et al. Resveratrol preconditioning protects hepatocytes against hepatic ischemia reperfusion injury via Toll-like receptor 4/nuclear factor-κB signaling pathway in vitro and in vivo[J]. Int Immunopharmacol, 2016, 35:201-209. doi: 10.1016/j.intimp.2016.03.032. [百度学术]
Chi X, Zhang R, Shen N, et al. Sulforaphane reduces apoptosis and oncosis along with protecting liver injury-induced ischemic reperfusion by activating the Nrf2/ARE pathway[J]. Hepatol Int, 2015, 9(2):321-329. doi: 10.1007/s12072-014-9604-y. [百度学术]
Sun P, Yuan F, Xu J, et al. Cryptotanshinone ameliorates hepatic normothermic ischemia and reperfusion injury in rats by anti-mitochondrial apoptosis[J]. Biol Pharm Bull, 2014, 37(11):1758-1765. doi: 10.1248/bpb.b14-00389. [百度学术]
Mahmoud MF, Gamal S, El-Fayoumi HM. Limonin attenuates hepatocellular injury following liver ischemia and reperfusion in rats via toll-like receptor dependent pathway[J]. Eur J Pharmacol, 2014, 740:676-682. doi: 10.1016/j.ejphar.2014.06.010. [百度学术]
Zhang F, Wang X, Tong L, et al. Matrine attenuates endotoxin-induced acute liver injury after hepatic ischemia/reperfusion in rats[J]. Surg Today, 2011, 41(8):1075-1084. doi: 10.1007/s00595-010-4423-9. [百度学术]
Akinci O, Durgun V, Kepil N, et al. The role of genistein in experimental hepatic ischemia-reperfusion model in rats[J]. Bratisl Lek Listy, 2019, 120(8):558-562. doi: 10.4149/BLL_2019_090. [百度学术]
Zhang J, Cheng P, Dai W, et al. Fenofibrate Ameliorates Hepatic Ischemia/Reperfusion Injury in Mice: Involvements of Apoptosis, Autophagy, and PPAR-α Activation[J]. PPAR Res, 2021, 2021:6658944. doi: 10.1155/2021/6658944. [百度学术]
Ma H, Liu Y, Li Z, et al. Propofol Protects Against Hepatic Ischemia Reperfusion Injury via Inhibiting Bnip3-Mediated Oxidative Stress[J]. Inflammation, 2021, 44(4):1288-1301. doi: 10.1007/s10753-021-01416-z. [百度学术]
Đurašević S, Stojković M, Sopta J, et al. The effects of meldonium on the acute ischemia/reperfusion liver injury in rats[J]. Sci Rep, 2021, 11(1):1305. doi: 10.1038/s41598-020-80011-y. [百度学术]
Xiong C, Du Z, Zhu Y, et al. Mycophenolate mofetil preconditioning protects mouse liver against ischemia/reperfusion injury in wild type and toll-like receptor 4 knockout mice[J]. Transplant Immunology, 2021, 65:101357. doi: 10.1016/j.trim.2020.101357. [百度学术]
Liu YX, Jin LM, Zhou L, et al. Mycophenolate mofetil attenuates liver ischemia/reperfusion injury in rats[J]. Transpl Int, 2009, 22(7):747-756. doi: 10.1111/j.1432-2277.2009.00866.x. [百度学术]
Zhou R, Li S, Mei X, et al. Remifentanil up‐regulates HIF1α expression to ameliorate hepatic ischaemia/reperfusion injury via the ZEB1/LIF axis[J]. J Cell Mol Med, 2020, 24(22):13196-13207. doi: 10.1111/jcmm.15929. [百度学术]
Liu X, Pan Z, Su D, et al. Remifentanil ameliorates liver ischemia-reperfusion injury through inhibition of interleukin-18 signaling[J]. Transplantation, 2015, 99(10):2109-2117. doi: 10.1097/TP.00000 00000000737. [百度学术]
Wang J, Deng M, Wu H, et al. Suberoylanilide hydroxamic acid alleviates orthotopic liver transplantation‑induced hepatic ischemia‑reperfusion injury by regulating the AKT/GSK3β/NF‑κB and AKT/mTOR pathways in rat Kupffer cells[J]. Int J Mol Med, 2020, 45(6):1875-1887. doi: 10.3892/ijmm.2020.4551. [百度学术]
Kamel EO, Hassanein EHM, Ahmed MA, et al. Perindopril Ameliorates Hepatic Ischemia Reperfusion Injury Via Regulation of NF‐κB‐p65/TLR‐4, JAK1/STAT‐3, Nrf‐2, and PI3K/Akt/mTOR Signaling Pathways[J]. Anat Rec (Hoboken), 2020, 303(7):1935-1949. doi: 10.1002/ar.24292. [百度学术]
Liu H, Dong J, Song S, et al. Spermidine ameliorates liver ischaemia-reperfusion injury through the regulation of autophagy by the AMPK-mTOR-ULK1 signalling pathway[J]. Biochem Biophys Res Commun, 2019, 519(2):227-233. doi: 10.1016/j.bbrc.2019.08.162. [百度学术]
Sherif IO, Al-Shaalan NH. Vildagliptin attenuates hepatic ischemia/reperfusion injury via the TLR4/NF-κB signaling pathway[J]. Oxid Med Cell Longev, 2018, 2018:3509091. doi: 10.1155/2018/3509091. [百度学术]
Liu Z, Lai C, Zhang X, et al. Simvastatin ameliorates total liver ischemia/reperfusion injury via KLF2-mediated mechanism in rats[J]. Clin Res Hepatol Gastroenterol, 2019, 43(2):171-178. doi: 10.1016/j.clinre.2018.08.014. [百度学术]
Liu Z, Zhang X, Xiao Q, et al. Pretreatment donors after circulatory death with simvastatin alleviates liver ischemia reperfusion injury through a KLF2-dependent mechanism in rat[J]. Oxid Med Cell Longev, 2017, 2017:3861914. doi: 10.1155/2017/3861914. [百度学术]
Li X, Wang J, Song X, et al. Ketamine ameliorates ischemia-reperfusion injury after liver autotransplantation by suppressing activation of Kupffer cells in rats[J]. Can J Physiol Pharmacol, 2018, 96(9):886-892. doi: 10.1139/cjpp-2018-0046. [百度学术]
Shin JK, Lee SM. Genipin protects the liver from ischemia/reperfusion injury by modulating mitochondrial quality control[J]. Toxicol Appl Pharmacol, 2017, 328:25-33. doi: 10.1016/j.taap.2017.05.002. [百度学术]
Wang Y, Wu S, Yu X, et al. Dexmedetomidine protects rat liver against ischemia-reperfusion injury partly by the α2A-adrenoceptor subtype and the mechanism is associated with the TLR4/NF-κB pathway[J]. Int J Mol Sci, 2016, 17(7):995. doi: 10.3390/ijms17070995. [百度学术]
Lee SC, Kim KH, Kim OH, et al. Activation of autophagy by everolimus confers hepatoprotection against ischemia-reperfusion injury[J]. Am J Transplant, 2016, 16(7):2042-2054. doi: 10.1111/ajt.13729. [百度学术]
Shen M, Lu J, Dai W, et al. Ethyl pyruvate ameliorates hepatic ischemia-reperfusion injury by inhibiting intrinsic pathway of apoptosis and autophagy[J]. Mediators Inflamm, 2013, 2013:461536. doi: 10.1155/2013/461536. [百度学术]
Koh EJ, Yoon SJ, Lee SM. Losartan protects liver against ischaemia/reperfusion injury through PPAR-γ activation and receptor for advanced glycation end‐products down‐regulation[J]. Br J Pharmacol, 2013, 169(6):1404-1416. doi: 10.1111/bph.12229. [百度学术]
Tüfek A, Tokgöz O, Aliosmanoglu İ, et al. The protective effects of dexmedetomidine on the liver and remote organs against hepatic ischemia reperfusion injury in rats[J]. Int J Surg, 2013, 11(1):96-100. doi: 10.1016/j.ijsu.2012.12.003. [百度学术]
Fu H, Chen H, Wang C, et al. Flurbiprofen, a cyclooxygenase inhibitor, protects mice from hepatic ischemia/reperfusion injury by inhibiting GSK-3β signaling and mitochondrial permeability transition[J]. Mol Med, 2012, 18(1):1128-1135. doi: 10.2119/molmed.2012.00088. [百度学术]
Ocuin LM, Zeng S, Cavnar MJ, et al. Nilotinib protects the murine liver from ischemia/reperfusion injury[J]. J Hepatol, 2012, 57(4):766-773. doi: 10.1016/j.jhep.2012.05.012. [百度学术]
Dai Y, Cui J, Cun Y, et al. Tetrahydrobiopterin ameliorates hepatic ischemia-reperfusion Injury by coupling with eNOS in mice[J]. J Surg Res, 2012, 176(2):e65-71. doi: 10.1016/j.jss.2011.12.034. [百度学术]
Fondevila C, Shen XD, Tsuchiyashi S, et al. Biliverdin therapy protects rat livers from ischemia and reperfusion injury[J]. Hepatology, 2004, 40(6):1333-1341. doi: 10.1002/hep.20480. [百度学术]
Settaf A, Morin D, Lamchouri F, et al. Trimetazidine ameliorates the hepatic injury associated with ischaemia-reperfusion in rats[J]. Pharmacol Res, 1999, 39(3):211-216. doi: 10.1006/phrs.1998.0427. [百度学术]
Castro CC, Pagnussat AS, Orlandi L, et al. Coumestrol has neuroprotective effects before and after global cerebral ischemia in female rats[J]. Brain Res, 2012, 1474:82-90. doi: 10.1016/j.brainres.2012.07.025. [百度学术]
Huang M, Cheng G, Tan H, et al. Capsaicin protects cortical neurons against ischemia/reperfusion injury via down-regulating NMDA receptors[J]. Exp Neurol, 2017, 295:66-76. doi: 10.1016/j.expneurol.2017.05.001. [百度学术]
Wang D, Jiang Q, Du X. Protective effects of scopolamine and penehyclidine hydrochloride on acute cerebral ischemia-reperfusion injury after cardiopulmonary resuscitation and effects on cytokines[J]. Exp Ther Med, 2018, 15(2):2027-2031. doi: 10.3892/etm.2017.5646. [百度学术]