摘要
研究表明多种microRNA(miRNA)可能在肝癌的发生发展中发挥重要作用,其作用机制仍值得进一步研究和探讨。因此,本研究从已报道的肝癌差异表达miRNA中进一步筛选关键miRNA,并验证和探讨其作用机制。
从已发表的研究中筛选出肝癌组织及肝癌患者血清/血浆中与正常肝组织及正常血清/血浆中共同的差异表达miRNA;用qRT-PCR在正常肝细胞与肝癌细胞中对筛选出的目标miRNA表达情况进行验证;用过表达和抑制的方法观察目标miRNA对肝癌细胞侵袭能力(Transwell实验)与增殖能力(MTT实验)的影响,以及在30例临床标本中检测目标miRNA的表达并通过KM plotter网站分析其对肝癌患者生存的影响;通过miRDB和GEPIA数据库预测和分析目标miRNA的靶基因,并用逆转实验和双荧光素酶报告实验进一步验证。
在肝癌组织(vs.正常肝组织)及肝癌患者血清/血浆(vs.正常人血清/血浆)中共同高表达的miRNA有4个(miR-18a-3p、miR-221-3p、miR-222-3p、miR-224-3p),共同低表达的miRNA有2个(miR-26a-3p、miR-125b-3p)。qRT-PCR实验证实,与正常肝细胞比较,miR-18a在肝癌细胞中高表达,miR-26a在肝癌细胞中低表达(均P<0.05)。过表达/抑制miR-18a-3p表达能促进/降低肝癌细胞的侵袭及生长能力(均P<0.05),而过表达/抑制miR-26a-3p对肝癌细胞的侵袭及生长能力影响无不法确定。分析结果显示,ADCY1是miR-18a-3p的靶基因,过表达ADCY1能部分逆转miR-18a-3p对肝癌细胞的上述作用,同时,表达上调的miR-18a-3p能通过结合到ADCY1 mRNA 3'UTR抑制ADCY1的表达。
肝癌是世界上第2位最常见恶性肿
microRNA(miRNA)是大小为17~25个核苷酸的短RNA分子,可通过转录后调控来抑制靶基因的表达。单个miRNA可以靶向数百个mRNA,并影响通常参与功能相互作用途径的许多基因的表达。miRNA已被证明与许多疾病的发病机制有关,并且参与众多肿瘤的发生、发展、转移及耐药等过
腺苷酸环化酶1(adenylate cyclase 1,ADCY1)是ADCY超家族的成员,其位于7p12.3,包含22个外显子;蛋白质产物的分子量为130 kD。已有相关研究报道了ADCY1在结肠
本研究通过筛选并分析相关测序数据,证实了miR-18a-3p在肝癌进展中发挥重要作用,并能通过转录后调控抑制下游ADCY1基因的表达来增加肝癌细胞的侵袭及生长能力。
本研究中所使用正常肝组织细胞L-02、肝癌细胞SK-HEP-1、HA22T均来自中科院上海细胞库,由本实验室保存。选取中南大学湘雅医院普通外科30例肝癌患者的癌组织及癌旁组织作为临床标本,患者入院时均签署知情同意告知书。
正常肝细胞L-02使用1640培养基进行培养、肝癌细胞SK-HEP-1、HA22T使用DMEM培养基进行培养(加入10%胎牛血清、1%谷氨酰胺、1%青霉素-链霉素双抗),并置于含5%CO2的37 ℃细胞培养箱中进行培养。
将基底胶按1∶20比例稀释后,每个transwell小室加入100 μL,并置于37 ℃细胞培养箱中使其凝固。2 h后,于上室加入150 μL含100 000个细胞的无血清培养基,下室加入含血清培养基,再放入37 ℃细胞培养箱中培养12~24 h。取出上室,进行清洗、固定、染色、显微镜下观察、拍照等。每组实验设置3个副孔。
TRIzol试剂提取肝癌细胞总RNA,取2 μg总RNA进行逆转录。 使用Bio-Rad CFX96系统进行实验,计算RNA(mRNA和miRNA)的表达。GAPDH(用于mRNA)或U6(用于miRNA)标准化数据,并通过ΔΔCt值评估相对表达。所有引物均购自Integrated DNA Technologies公司(美国)。
用含10%胎小牛血清的培养液配成单个细胞悬液,以每孔1 000~10 000个细胞接种到96孔板,每孔体积200 μL。培养3~5 d后,每孔MTT溶液(5 mg/mL用PBS配)20 μL继续孵育4 h,终止培养,小心吸弃孔内培养上清液,对于悬浮细胞需要离心后再吸弃孔内培养上清液。每孔加150 μL DMSO,振荡10 min,使结晶物充分溶解。选择490 nm波长,在酶联免疫监测仪上测定各孔光吸收值,记录结果,以时间为横坐标,吸光值为纵坐标绘制细胞生长曲线。
过表达miR-520F-3p采用pLV慢病毒质粒作为载体,序列(上游:CGC GTA CTG CCC TAA GTG CTC CTT CTG GGT CGA CCC AGA AGG AGC ACT TAG GGC AGT TTT TTG,下游:CGC AAA AAA CTG CCC TAA GTG CTC CTT CTG GGT CGA CCC AGA AGG AGC ACT TAG GGC AGT A)由 Integrated DNA Technologies公司(美国)提供。新构建质粒经小提、酶切验证后再经大提扩增,然后经慢病毒包装、转染,形成稳定转染细胞后行下一步功能实验。
miR-18a-3p 抑制剂质粒购买于Integrated DNA Technologies公司(美国),具体序列为rCrCrA rGrArA rGrGrA rGrCrA rCrUrU rArGrG rGrCrA rGrU。瞬转具体步骤:⑴ 当肝癌细胞长至60%~80%汇合度时转染,6孔板:贴壁细胞0.25~1×1
根据Targetscan网站(https://www.targetscan.org/vert_71)对ADCY1 3'UTR序列分析结果,发现ADCY1 3'UTR共9 121个碱基序列,为分析miR-18a-3p对ADCY1 3'UTR的调控功能,选取ADCY1 3'UTR前2 200个碱基序列构建野生型及突变型质粒。ADCY1的3'UTR采用psiCHECK-2质粒为载体。野生型引物序列(上游:CAG TAA TTC TAG GCG ATC GCA GGA GCC CAC GTG GGC CTCT,下游:AGA TAT TTT ATT GCG GCC AGC CCC AGT AGC AGC GAG AGG CC);突变型引物序列(上游:CAG TAA TTC TAG GCG ATC GCA GGA GCC CAC GTG GGC CTCT,下游:AGA TAT TTT ATT GCG GCC AGC CAA AGT CTC CAG TGG GTC CA)由Integrated DNA Technologies公司(美国)提供。新构建质粒经小提、酶切验证后再经大提扩增,然后经慢病毒包装、转染,形成稳定转染细胞后行下一步功能实验。
首先,从已发

图1 差异表达miRNA筛选及验证 A:从已发表文章中筛选出肝癌中差异表达的6个miRNA;B:6个miRNA在正常肝细胞L-02及肝癌细胞HA22T中的表达情况;C:6个miRNA在正常肝细胞L-02及肝癌细胞SK-HEP-1中的表达情况
Figure 1 Screening and validation of the differentially-expressed miRNAs A: Six miRNAs screened out from the published studies; B: Expression of 6 miRNAs in normal hepatic L-02 cells and liver cancer HA22T cells; C: Expression of 6 miRNAs in normal hepatic L-02 cells and liver cancer SK-HEP-1 cells
过表达miR-18a-3p/miR-18a-3p抑制剂能明显促进/抑制肝癌细胞的侵袭及增殖能力(均P<0.05)(

图2 miR-18a-3p、miR-26a-3p对肝癌细胞侵袭及增殖能力的影响 A-B:过表达miR-18a-3p/抑制miR-18a-3p后肝癌细胞侵袭能力的变化;C-D:过表达miR-18a-3p/抑制miR-18a-3p后肝癌细胞增殖能力的变化;E-F:过表达miR-26a-3p/miR-26a-3p 抑制剂后肝癌细胞侵袭能力的变化;G-H:过表达miR-26a-3p/miR-26a-3p 抑制剂后肝癌细胞增殖能力的变化
Figure 2 Influences of miR-18a-3p and miR-26a-3p on invasion and proliferation abilities of liver cancer cells A-B: Changes in invasion ability of liver cancer cells after overexpression miR-18a-3p/miR-18a-3p inhibitor; C-D: Changes in proliferation ability of liver cancer cells after overexpression miR-18a-3p/miR-18a-3p inhibitor; E-F: Changes in invasion ability of liver cancer cells after miR-26a-3p overexpression/miR-26a-3p inhibiton; G-H: Changes in proliferation ability of liver cancer cells after miR-26a-3p overexpression/miR-26a-3p inhibiton
在30例肝癌患者的癌和癌旁组织标本中检验了miR-18a-3p的表达情况,结果显示肝癌组织中miR-18a-3p的表达明显高于癌旁组织(P<0.01)(

图3 组织标本验证miR-18a-3p的表达及miR-18a的表达与肝癌患者的生存关系 A:30对临床标本中miR-18a-3p的表达情况;B:KM plotter网站分析miR-18a的表达与肝癌的生存关系
Figure 3 Validation of miR-18a-3p expression in tissue samples and relationship between miR-18a expression and survival of liver cancer patients A: The miR-18a-3p expressions in 30 paired clinical specimens; B: Analysis of the relationship between miR-18a expression and survival of liver cancer patients using KM plotter website
为了进一步研究miR-18a调控肝癌进展的具体机制,通过miRDB网站(http://mirdb.org/)预测能被miR-18a-3p靶向调控的下游基因,并选取其中得分>95分的基因(SNX8、FNDC5、EFNA1、ZBBX、ADCY1、PDP1)(

图4 miR-18a-3p与ADCY1的关系分析 A:miRDB网站预测能被miR-18a-3p靶向调控的6个下游基因;B:GEPIA数据库分析以上6个基因在肝癌组织及癌旁组织中的表达情况;C-D:同时过表达miR-18a-3p及ADCY1后检测肝癌细胞的侵袭及增殖能力
Figure 4 Analysis of relationship between miR-18a-3p and ADCY1 A: The 6 downstream genes potentially regulated by miR-18a-3p predicted by miRDB website; B: Analysis the expressions of the 6 genes in liver cancer and adjacent tissues using GEPIA database; C-D: Invasion and proliferation abilities of liver cancer cells after co-overexpression of miR-18a-3p and ADCY1
为研究miR-18a-3p调控ADCY1的机制,预测ADCY1 mRNA 3'UTR前2 200 bp区域能与miR-18a-3p结合的靶点,并构建相应的野生型和突变型质粒(

图5 双荧光素酶报告实验 A:miR-18a-3p与ADCY1结合位点的模式图及野生型、突变型质粒构建原理;B:转染野生型或突变型质粒后肝癌细胞的荧光素酶活性
Figure 5 Dual-luciferase reporter assay A: Pattern of the binding site between miR-18a-3p and ADCY1, and construction principle of the wild-type and mutant-type plasmids; B: Luciferase activities of the liver cancer cells after transfection with wild-type and mutant-type plasmids
全世界每年有超过850 000例诊断为肝癌的患
非编码RNA已经被证实在多种疾病发生、发展、转移及耐药过程中发挥重要作
ADCY1是ADCY超家族的成员,它位于7p12.3,包含22个外显子;其蛋白质产物的分子量为130 kD。ADCY1主要表达于脑、睾丸、甲状腺、肝脏、前列腺、子宫内膜、心脏等组织器官。已有相关研究报道了ADCY1在许多疾病中发挥重要作用。研
miR-18a-3p在肝癌组织及细胞中高表达,并可通过转录后调控抑制下游ADCY1基因的表达,以此促进肝癌细胞的侵袭及增殖能力。本研究结果可为寻找肝癌治疗的新靶点提供实验基础。
利益冲突
所有作者均声明不存在利益冲突。
参考文献
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1):7-33. doi: 10.3322/caac.21708. [百度学术]
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1):7-33. doi: 10.3322/caac.21654. [百度学术]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1):7-30. doi: 10.3322/caac.21590. [百度学术]
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版)[J]. 肿瘤综合治疗电子杂志, 2020, 6(2):55-85. doi: 10.12151/JMCM.2020.02-10. [百度学术]
National Health Commission of the People's Republic of China. Primary hepatic carcinoma diagnosis and treatment specification(2019 edition)[J]. Journal of Multidisciplinary Cancer Management: Electronic Version, 2020, 6(2):55-85. doi: 10.12151/JMCM.2020.02-10. [百度学术]
Erstad DJ, Tanabe KK. Hepatocellular carcinoma: early-stage management challenges[J]. J Hepatocell Carcinoma, 2017, 4:81-92. doi: 10.2147/JHC.S107370. [百度学术]
Jiang HB, Ge RX, Chen SW, et al. miRNA-204-5p acts as tumor suppressor to influence the invasion and migration of astrocytoma by targeting ezrin and is downregulated by DNA methylation[J]. Bioengineered, 2021, 12(2):9301-9312. doi: 10.1080/21655979.2021.2000244. [百度学术]
Safi A, Delgir S, Ilkhani K, et al. The expression of miRNA-152-3p and miRNA-185 in tumor tissues versus margin tissues of patients with chemo-treated breast cancer[J]. BMC Res Notes, 2021, 14(1):234. doi: 10.1186/s13104-021-05647-z. [百度学术]
Zhang JZ, Zhong Y, Sang YM, et al. miRNA-144-5p/ITGA3 suppressed the tumor-promoting behaviors of thyroid cancer cells by downregulating ITGA3[J]. Comput Math Methods Med, 2021, 2021:9181941. doi: 10.1155/2021/9181941. [百度学术]
Li YF, Guan B, Liu JT, et al. microRNA-200b is downregulated and suppresses metastasis by targeting LAMA4 in renal cell carcinoma[J]. EBioMedicine, 2019, 44:439-451. doi: 10.1016/j.ebiom.2019.05.041. [百度学术]
Fang C, Dai CY, Mei Z, et al. microRNA-193a stimulates pancreatic cancer cell repopulation and metastasis through modulating TGF-β2/TGF-βRIII signalings[J]. J Exp Clin Cancer Res, 2018, 37(1):25. doi: 10.1186/s13046-018-0697-3. [百度学术]
Xu WG, Sun DP, Wang YQ, et al. Inhibitory effect of microRNA-608 on lung cancer cell proliferation, migration, and invasion by targeting BRD4 through the JAK2/STAT3 pathway[J]. Bosn J Basic Med Sci, 2020, 20(3):347-356. doi: 10.17305/bjbms.2019.4216. [百度学术]
李乾, 郭清皓. 肝细胞癌中miR-574-5p的表达与作用及其与预后的关系[J]. 中国普通外科杂志, 2021, 30(8):926-933. doi: 10.7659/j.issn.1005-6947.2021.08.007. [百度学术]
Li Q, Guo QH. Expression and action of miR-574-5p in hepatocellular carcinoma and its association with prognosis[J]. Chinese Journal of General Surgery, 2021, 30(8):926-933. doi: 10.7659/j.issn.1005-6947.2021.08.007. [百度学术]
Liu G, Zhao H, Song Q, et al. Long non-coding RNA DPP10-AS1 exerts anti-tumor effects on colon cancer via the upregulation of ADCY1 by regulating microRNA-127-3p[J]. Aging (Albany NY), 2021, 13(7):9748-9765. doi: 10.18632/aging.202729. [百度学术]
Ma M, Dai J, Tang H, et al. microRNA-23a-3p inhibits mucosal melanoma growth and progression through targeting adenylate cyclase 1 and attenuating cAMP and MAPK pathways[J]. Theranostics, 2019, 9(4):945-960. doi: 10.7150/thno.30516. [百度学术]
Zou T, Liu JY, She L, et al. A perspective profile of ADCY1 in cAMP signaling with drug-resistance in lung cancer[J]. J Cancer, 2019, 10(27):6848-6857. doi: 10.7150/jca.36614. [百度学术]
Pang WJ, Yao WY, Dai X, et al. Pancreatic cancer-derived exosomal microRNA-19a induces β-cell dysfunction by targeting ADCY1 and EPAC2[J]. Int J Biol Sci, 2021, 17(13):3622-3633. doi: 10.7150/ijbs.56271. [百度学术]
Zhang YF, Yang JR, Wang XY, et al. GNG7 and ADCY1 as diagnostic and prognostic biomarkers for pancreatic adenocarcinoma through bioinformatic-based analyses[J]. Sci Rep, 2021, 11(1):20441. doi: 10.1038/s41598-021-99544-x. [百度学术]
Xu JH, An P, Winkler CA, et al. Dysregulated microRNAs in hepatitis B virus-related hepatocellular carcinoma: potential as biomarkers and therapeutic targets[J]. Front Oncol, 2020, 10:1271. doi: 10.3389/fonc.2020.01271. [百度学术]
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2):87-108. doi: 10.3322/caac.21262. [百度学术]
GBD Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2015, 385(9963):117-171. doi: 10.1016/S0140-6736(14)61682-2. [百度学术]
European Association For The Study Of The Liver, European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma[J]. J Hepatol, 2012, 56(4):908-943. doi: 10.1016/j.jhep.2011.12.001. [百度学术]
Schultheiß M, Bengsch B, Thimme R. Hepatocellular Carcinoma[J]. Dtsch Med Wochenschr, 2021,146(21):1411-1420. doi: 10.1055/a-1226-3047. [百度学术]
国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38(2):288-303. doi:10.3969/j.issn.1001-5256.2022.02.009. [百度学术]
General Office of National Health Commission. Standard for diagnosis and treatment of primary liver cancer (2022 edition)[J]. Journal of Clinical Hepatology, 2022, 38(2):288-303. doi:10.3969/j.issn.1001-5256.2022.02.009. [百度学术]
郝芬林, 李涛, 姚宏, 等. 环状RNA在肝细胞癌发生发展中的作用研究进展[J]. 中国普通外科杂志, 2022, 31(1):107-115. doi: 10.7659/j.issn.1005-6947.2022.01.012. [百度学术]
Hao FL, Li T, Yao H, et al. Association of circRNAs with the occurrence and development of hepatocellular carcinoma: recent progress[J]. Chinese Journal of General Surgery, 2022, 31(1):107-115. doi: 10.7659/j.issn.1005-6947.2022.01.012. [百度学术]
Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation[J]. RNA, 2003, 9(3):277-279. doi: 10.1261/rna.2183803. [百度学术]
Wei YT, Guo DW, Hou XZ, et al. miRNA-223 suppresses FOXO1 and functions as a potential tumor marker in breast cancer[J]. Cell Mol Biol (Noisy-le-grand), 2017, 63(5):113-118. doi: 10.14715/cmb/2017.63.5.21. [百度学术]
Liu GD, Ouyang XW, Sun Y, et al. The miR-92a-2-5p in exosomes from macrophages increases liver cancer cells invasion via altering the AR/PHLPP/p-Akt/β-catenin signaling[J]. Cell Death Differ, 2020, 27(12):3258-3272. doi: 10.1038/s41418-020-0575-3. [百度学术]
Chen XF, Guo JF, Xu JF, et al. MiRNA-206 inhibits proliferation of renal clear cell carcinoma by targeting ZEB2[J]. Eur Rev Med Pharmacol Sci, 2019, 23(18):7826-7834. doi: 10.26355/eurrev_201909_18992. [百度学术]
Chen J, Wu F, Shi Y, et al. Identification of key candidate genes involved in melanoma metastasis[J]. Mol Med Rep, 2019, 20(2):903-914. doi: 10.3892/mmr.2019.10314. [百度学术]
He RQ, Li XJ, Liang L, et al. The suppressive role of miR-542-5p in NSCLC: the evidence from clinical data and in vivo validation using a chick chorioallantoic membrane model[J]. BMC Cancer, 2017, 17(1):655. doi: 10.1186/s12885-017-3646-1. [百度学术]
Ma JG, Hou X, Li MX, et al. Genome-wide methylation profiling reveals new biomarkers for prognosis prediction of glioblastoma[J]. J Cancer Res Ther, 2015, 11(Suppl 2):C212-215. doi: 10.4103/0973-1482.168188. [百度学术]