摘要
腹膜粘连(PA)是由手术、腹膜炎症、腹膜透析等引起的腹腔内受损组织和器官间的异常纤维性粘连带,其中手术是引发PA的主要原因。PA可引起不孕、肠梗阻、肠穿孔等临床并发症,二次松解手术为主要治疗方案,但易复发且存在多种并发症风险。近年来开发出一系列用于PA预防与治疗的药物和屏障材料,但防治效果尚不满意。抗PA药物会增加出血的风险,并抑制正常免疫功能,屏障材料虽然一定程度上缓解了PA进展,但因其不能持久覆盖腹膜损伤部位、降解不彻底等问题,不能达到抗PA的理想效果。因此在PA防治上需要新的突破。近期的研究表明PA是一系列事件综合作用的结果,包括血管损伤、血小板聚集、凝血级联反应、纤维蛋白沉积等过程,最终纤维蛋白和细胞外基质沉积形成粘连带,后期形成收缩性瘢痕并引发临床症状,上述事件中,参与PA的各种细胞发挥了关键作用。腹膜微环境中分布有腹膜间皮细胞(PMC)、中性粒细胞、嗜酸性粒细胞、T淋巴细胞、巨噬细胞、肥大细胞等。生理条件下,这些细胞成分对腹膜微环境的动态稳定具有重要意义。当细菌和异物侵入腹膜腔时,纤维蛋白和炎性细胞随腹腔液渗出以限制、清除并吸收异物,最终纤维蛋白被吸收,腹膜损伤正常愈合。病理条件下,上述细胞功能紊乱,从而促进PA进展。PMC功能的失调促进初始PA形成、炎症反应扩大、纤维蛋白过度沉积;中性粒细胞和腹膜常驻巨噬细胞最早被募集到腹膜损伤部位,前者介导炎症反应,后者覆盖损伤部位起短暂保护作用;PA中晚期中性粒细胞形成中性粒细胞外陷阱并协同其他细胞促进纤维化进展导致PA形成。笔者就腹膜微环境中多种细胞在PA发生和发展中的作用机制,以及各种细胞在PA进展中的相互作用作一概述,此外介绍近年来防治PA的主要措施,并总结以参与PA的细胞为中心防治PA的策略,以期为临床防治PA提供新思路。
China Journal of General Surgery, 2023, 32(1):128-135.
//dx.doi.org/10.7659/j.issn.1005-6947.2023.01.012
http:
腹膜粘连(peritoneal adhesions,PA)是由手术、腹膜炎、腹膜透析等引起的腹腔中受损组织和器官间的异常纤维性粘连
目前PA的发生机制仍不明晰。近期研究提示PA的发生机制主要为:⑴ 纤维蛋白溶解系统的失
PMC的损伤是PA发生的始动原因。PMC完整性的破坏、基底膜的暴露是纤维蛋白附着的基
正常情况下,PMC表面分布有糖萼,糖萼由表面活性剂、磷脂、糖胺聚糖组成,能够在内脏活动时提供光滑的保护表
正常情况下,PMC产生纤溶酶、尿激酶型纤溶酶原激活剂、组织型纤溶酶原激活剂及1型纤溶酶原激活剂抑制剂(plasminogen activator inhibitor 1,PAI-1)和2型纤溶酶原激活剂抑制
腹膜腔内至少含有两类巨噬细胞亚
腹膜巨噬细胞既保护腹膜受损部位又促进P
腹腔巨噬细胞诱导炎症反应并促进PA时,LPM和SPM之间的配合程度目前仍不清楚,但目前的研
多核中性粒细胞(polymorphonuclear leukocytes,PMN)可能最早出现在腹膜损伤部位发挥促炎作用。在小鼠盲肠灼烧模型实验中发现Ly6G阳性(淋巴细胞抗原6复合物,位点G阳性)PMN被募集到受损浆膜中,在盲肠被烧灼后约6 h数量达到峰值,而巨噬细胞、T细胞和B细胞并未出
肥大细胞脱颗粒释放组胺、类胰蛋白酶、糜酶、TGF-β、TNF-α、IL-4等介
综上所述,多种细胞相互作用共同参与PA的形成,PMC在PA形成和发展中占主导地位。PMC损伤后释放HA,腹膜常驻巨噬细胞被募集到损伤部位并在PA早期起保护作
目前防治PA的策略主要有:⑴ 减轻手术对腹膜的损伤,如保持组织湿润、精细止血、避免细菌和异物的沉积
目前以参与PA形成的细胞为中心防治PA主要有两大方案。第一,促进PMC的再生、修复并避免PMC发生MMT。对PMC的干预具有多方面优势。PMC的再生能够防止腹膜进一步损
从细胞角度制定的防治PA策略具有一定的可行性,但仍需进一步的临床研究,同时可考虑在调节细胞功能的同时联合使用其他抗PA药物,以期达到最佳的防治效
多种细胞功能的失调协同促进PA的发生和发展。PMC的破坏、丢失和MMT表型转换是PA形成的基础。随后募集巨噬细胞、中性粒细胞等共同促使炎症、纤维化进展,最终导致纤维蛋白永久性沉积和PA形成。腹膜驻留巨噬细胞对PA有双重作用,未来应该加强对其抑制PA作用的探索,通过抑制其促PA机制达到对腹膜损伤的保护效果,从而促进损伤部位正常愈合。目前多种药物和屏障材料已用于PA的预防与治疗,但临床效果尚不满意,从参与PA的细胞机制入手开发新的药物和材料或将为抗PA的研究提供新的思路。
利益冲突
所有作者均声明不存在利益冲突。
参考文献
Jaafari A, Baradaran Rahimi V, Vahdati-Mashhadian N, et al. Evaluation of the therapeutic effects of the hydroethanolic extract of Portulaca oleracea on surgical-induced peritoneal adhesion[J]. Mediators Inflamm, 2021, 2021:8437753. doi: 10.1155/2021/8437753. [百度学术]
Herrick SE, Wilm B. Post-surgical peritoneal scarring and key molecular mechanisms[J]. Biomolecules, 2021, 11(5):692. doi: 10.3390/biom11050692. [百度学术]
Hsu YT, Wu CH, Chao CY, et al. Hypochlorite-induced porcine model of peritoneal fibrosis through the activation of IL1β-CX3CL1-TGFβ1 signal axis[J]. Sci Rep, 2020, 10:11496. doi: 10.1038/s41598-020-68495-0. [百度学术]
Foster DS, Marshall CD, Gulati GS, et al. Elucidating the fundamental fibrotic processes driving abdominal adhesion formation[J]. Nat Commun, 2020, 11(1):4061. doi: 10.1038/s41467-020-17883-1. [百度学术]
Soltany S. Postoperative peritoneal adhesion: an update on physiopathology and novel traditional herbal and modern medical therapeutics[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(2):317-336. doi: 10.1007/s00210-020-01961-8. [百度学术]
Chandel AKS, Shimizu A, Hasegawa K, et al. Advancement of biomaterial-based postoperative adhesion barriers[J]. Macromol Biosci, 2021, 21(3):e2000395. doi: 10.1002/mabi.202000395. [百度学术]
Wei GB, Wang ZJ, Liu RL, et al. A combination of hybrid polydopamine-human keratinocyte growth factor nanoparticles and sodium hyaluronate for the efficient prevention of postoperative abdominal adhesion formation[J]. Acta Biomater, 2022, 138:155-167. doi: 10.1016/j.actbio.2021.10.015. [百度学术]
Xu SS, Wang CH, Mao RQ, et al. Surface structure change properties: auto-soft bionic fibrous membrane in reducing postoperative adhesion[J]. Bioact Mater, 2022, 12:16-29. doi: 10.1016/j.bioactmat.2021.10.040. [百度学术]
Tang JY, Xiang ZY, Bernards MT, et al. Peritoneal adhesions: occurrence, prevention and experimental models[J]. Acta Biomater, 2020, 116:84-104. doi: 10.1016/j.actbio.2020.08.036. [百度学术]
Zeng XX, Lu B, Wang F, et al. The effect of Smad2- and Smad3-targeting RNA interference on extracellular matrix synthesis in rat fibroblasts of peritoneal adhesion tissues[J]. Am J Transl Res, 2020, 12(11):7420-7429. [百度学术]
Liu X, Wei YW, Bai X, et al. Berberine prevents primary peritoneal adhesion and adhesion reformation by directly inhibiting TIMP-1[J]. Acta Pharm Sin B, 2020, 10(5):812-824. doi: 10.1016/j.apsb.2020.02.003. [百度学术]
Fatehi Hassanabad A, Zarzycki AN, Jeon K, et al. Post-operative adhesions: a comprehensive review of mechanisms[J]. Biomedicines, 2021, 9(8):867. doi: 10.3390/biomedicines9080867. [百度学术]
Shen TL, Wu YH, Wang XJ, et al. Activating SIRT3 in peritoneal mesothelial cells alleviates postsurgical peritoneal adhesion formation by decreasing oxidative stress and inhibiting the NLRP3 inflammasome[J]. Exp Mol Med, 2022, 54(9):1486-1501. doi: 10.1038/s12276-022-00848-3. [百度学术]
Hu QY, Xia XF, Kang X, et al. A review of physiological and cellular mechanisms underlying fibrotic postoperative adhesion[J]. Int J Biol Sci, 2021, 17(1):298-306. doi: 10.7150/ijbs.54403. [百度学术]
Tsai JM, Shoham M, Fernhoff NB, et al. Neutrophil and monocyte kinetics play critical roles in mouse peritoneal adhesion formation[J]. Blood Adv, 2019, 3(18):2713-2721. doi: 10.1182/bloodadvances.2018024026. [百度学术]
Zindel J, Keogh-Stroka D, Candinas D. Intraperitoneal microbial contamination drives post-surgical peritoneal adhesions by mesothelial EGFR-signaling[J]. Br J Surg, 2022, 109 (Supplement_3):znac176.001. doi: 10.1093/bjs/znac176.001. [百度学术]
Ito T, Shintani Y, Fields L, et al. Cell barrier function of resident peritoneal macrophages in post-operative adhesions[J]. Nat Commun, 2021, 12(1):2232. doi: 10.1038/s41467-021-22536-y. [百度学术]
Fischer A, Koopmans T, Ramesh P, et al. Post-surgical adhesions are triggered by calcium-dependent membrane bridges between mesothelial surfaces[J]. Nat Commun, 2020, 11(1):3068. doi: 10.1038/s41467-020-16893-3. [百度学术]
Lupinacci S, Perri A, Toteda G, et al. Olive leaf extract counteracts epithelial to mesenchymal transition process induced by peritoneal dialysis, through the inhibition of TGFβ1 signaling[J]. Cell Biol Toxicol, 2019, 35(2):95-109. doi: 10.1007/s10565-018-9438-9. [百度学术]
Han SM, Ryu HM, Suh J, et al. Network-based integrated analysis of omics data reveal novel players of TGF-β1-induced EMT in human peritoneal mesothelial cells[J]. Sci Rep, 2019, 9(1):1497. doi: 10.1038/s41598-018-37101-9. [百度学术]
Wilson RB, Archid R, Reymond MA. Reprogramming of mesothelial-mesenchymal transition in chronic peritoneal diseases by estrogen receptor modulation and TGF-β1 inhibition[J]. Int J Mol Sci, 2020, 21(11):E4158. doi: 10.3390/ijms21114158. [百度学术]
Zindel J, Mittner J, Bayer J, et al. Intraperitoneal microbial contamination drives post-surgical peritoneal adhesions by mesothelial EGFR-signaling[J]. Nat Commun, 2021, 12(1):7316. doi: 10.1038/s41467-021-27612-x. [百度学术]
Uyama N, Tsutsui H, Wu ST, et al. Anti-interleukin-6 receptor antibody treatment ameliorates postoperative adhesion formation[J]. Sci Rep, 2019, 9(1):17558. doi: 10.1038/s41598-019-54175-1. [百度学术]
Wilson RB. Hypoxia, cytokines and stromal recruitment: parallels between pathophysiology of encapsulating peritoneal sclerosis, endometriosis and peritoneal metastasis[J]. Pleura Peritoneum, 2018, 3(1):20180103. doi: 10.1515/pp-2018-0103. [百度学术]
Honda M, Kadohisa M, Yoshii D, et al. Directly recruited GATA6 + peritoneal cavity macrophages contribute to the repair of intestinal serosal injury[J]. Nat Commun, 2021, 12(1):7294. doi: 10.1038/s41467-021-27614-9. [百度学术]
Katz S, Zsiros V, Dóczi N, et al. Inflammation-induced epithelial-to-mesenchymal transition and GM-CSF treatment stimulate mesenteric mesothelial cells to transdifferentiate into macrophages[J]. Inflammation, 2018, 41(5):1825-1834. doi: 10.1007/s10753-018-0825-4. [百度学术]
Katz S, Zsiros V, Kiss AL. Under inflammatory stimuli mesenteric mesothelial cells transdifferentiate into macrophages and produce pro-inflammatory cytokine IL-6[J]. Inflamm Res, 2019, 68(7): 525-528. doi: 10.1007/s00011-019-01247-7. [百度学术]
Fang CC, Chou TH, Huang JW, et al. The small molecule inhibitor QLT-0267 decreases the production of fibrin-induced inflammatory cytokines and prevents post-surgical peritoneal adhesions[J]. Sci Rep, 2018, 8(1):9481. doi: 10.1038/s41598-018-25994-5. [百度学术]
Dijkstra FR, Nieuwenhuijzen M, Reijnen MM, et al. Recent clinical developments in pathophysiology, epidemiology, diagnosis and treatment of intra-abdominal adhesions[J]. Scand J Gastroenterol Suppl, 2000, (232):52-59. [百度学术]
Liberek T, Topley N, Luttmann W, et al. Adherence of neutrophils to human peritoneal mesothelial cells: role of intercellular adhesion molecule-1[J]. J Am Soc Nephrol, 1996, 7(2):208-217. doi: 10.1681/ASN.V72208. [百度学术]
Zwicky SN, Stroka D, Zindel J. Sterile injury repair and adhesion formation at serosal surfaces[J]. Front Immunol, 2021, 12:684967. doi: 10.3389/fimmu.2021.684967. [百度学术]
Honjo K, Munakata S, Tashiro Y, et al. Plasminogen activator inhibitor-1 regulates macrophage-dependent postoperative adhesion by enhancing EGF-HER1 signaling in mice[J]. FASEB J, 2017, 31(6):2625-2637. doi: 10.1096/fj.201600871RR. [百度学术]
Ghosn EE, Cassado AA, Govoni GR, et al. Two physically, functionally, and developmentally distinct peritoneal macrophage subsets[J]. Proc Natl Acad Sci USA, 2010, 107(6):2568-2573. doi: 10.1073/pnas.0915000107. [百度学术]
Bain CC, Hawley CA, Garner H, et al. Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities[J]. Nat Commun, 2016, 7:ncomms11852. doi: 10.1038/ncomms11852. [百度学术]
Cassado AD, D'Império Lima MR, Bortoluci KR. Revisiting mouse peritoneal macrophages: heterogeneity, development, and function[J]. Front Immunol, 2015, 6:225. doi: 10.3389/fimmu.2015.00225. [百度学术]
Bain CC, Jenkins SJ. The biology of serous cavity macrophages[J]. Cell Immunol, 2018, 330:126-135. doi: 10.1016/j.cellimm.2018.01.003. [百度学术]
Louwe PA, Badiola Gomez L, Webster H, et al. Recruited macrophages that colonize the post-inflammatory peritoneal niche convert into functionally divergent resident cells[J]. Nat Commun, 2021, 12:1770. doi: 10.1038/s41467-021-21778-0. [百度学术]
Zindel J, Peiseler M, Hossain M, et al. Primordial GATA6 macrophages function as extravascular platelets in sterile injury[J]. Science, 2021, 371(6533):eabe0595. doi: 10.1126/science.abe0595. [百度学术]
Chen YN, Hu MR, Wang L, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877:173090. doi: 10.1016/j.ejphar.2020.173090. [百度学术]
Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation[J]. Annu Rev Pathol, 2020, 15:493-518. doi: 10.1146/annurev-pathmechdis-012419-032847. [百度学术]
Parikova A, Hruba P, Krediet RT, et al. Long-term peritoneal dialysis treatment provokes activation of genes related to adaptive immunity[J]. Physiol Res, 2019, 68(5):775-783. doi: 10.33549/physiolres.934158. [百度学术]
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9):6425-6440. doi: 10.1002/jcp.26429. [百度学术]
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663):1532-1535. doi: 10.1126/science.1092385. [百度学术]
Urban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans[J]. PLoS Pathog, 2009, 5(10):e1000639. doi: 10.1371/journal.ppat.1000639. [百度学术]
Mukai, Tsai M, Saito H, et al. Mast cells as sources of cytokines, chemokines, and growth factors[J]. Immunol Rev, 2018, 282(1):121-150. doi: 10.1111/imr.12634. [百度学术]
Atiakshin D, Buchwalow I, Tiemann M. Mast cell chymase: morphofunctional characteristics[J]. Histochem Cell Biol, 2019, 152(4):253-269. doi: 10.1007/s00418-019-01803-6. [百度学术]
Branco ACCC, Yoshikawa FSY, Pietrobon AJ, et al. Role of histamine in modulating the immune response and inflammation[J]. Mediators Inflamm, 2018, 2018:9524075. doi: 10.1155/2018/9524075. [百度学术]
Ng MF. The role of mast cells in wound healing[J]. Int Wound J, 2010, 7(1):55-61. doi: 10.1111/j.1742-481x.2009.00651.x. [百度学术]
Yang LL, Lian ZY, Zhang B, et al. Effect of ligustrazine nanoparticles on Th1/Th2 balance by TLR4/MyD88/NF-κB pathway in rats with postoperative peritoneal adhesion[J]. BMC Surg, 2021, 21(1):211. doi: 10.1186/s12893-021-01201-7. [百度学术]
Krämer B, Neis F, Brucker SY, et al. Peritoneal adhesions and their prevention - current trends[J]. Surg Technol Int, 2021, 38:221-233. doi: 10.52198/21.STI.38.HR1385. [百度学术]
Cai ZX, Tang YM, Wei Y, et al. Physically cross-linked hyaluronan-based ultrasoft cryogel prepared by freeze-thaw technique as a barrier for prevention of postoperative adhesions[J]. Biomacromolecules, 2021, 22(12):4967-4979. doi: 10.1021/acs.biomac.1c00878. [百度学术]
Ruiz-Esparza GU, Wang XC, Zhang XC, et al. Nanoengineered shear-thinning hydrogel barrier for preventing postoperative abdominal adhesions[J]. Nanomicro Lett, 2021, 13(1):212. doi: 10.1007/s40820-021-00712-5. [百度学术]
Zhang S, Xu ZY, Wen XJ, et al. A nano chitosan membrane barrier prepared via Nanospider technology with non-toxic solvent for peritoneal adhesions' prevention[J]. J Biomater Appl, 2021, 36(2):321-331. doi: 10.1177/08853282211008109. [百度学术]
Li HB, Wei XJ, Yi XT, et al. Antibacterial, hemostasis, adhesive, self-healing polysaccharides-based composite hydrogel wound dressing for the prevention and treatment of postoperative adhesion[J]. Mater Sci Eng C Mater Biol Appl, 2021, 123:111978. doi: 10.1016/j.msec.2021.111978. [百度学术]
Allègre L, Le Teuff I, Leprince S, et al. A new bioabsorbable polymer film to prevent peritoneal adhesions validated in a post-surgical animal model[J]. PLoS One, 2018, 13(11):e0202285. doi: 10.1371/journal.pone.0202285. [百度学术]
Cheng F, Xu L, Dai JL, et al. N, O-carboxymethyl chitosan/oxidized cellulose composite sponge containing ε-poly-l-lysine as a potential wound dressing for the prevention and treatment of postoperative adhesion[J]. Int J Biol Macromol, 2022, 209(Pt B):2151-2164. doi: 10.1016/j.ijbiomac.2022.04.195. [百度学术]
Shi MY, Liu HC, Zhang TT, et al. Extracellular vesicles derived from adipose mesenchymal stem cells promote peritoneal healing by activating MAPK-ERK1/2 and PI3K-Akt to alleviate postoperative abdominal adhesion[J]. Stem Cells Int, 2022, 2022:1940761. doi: 10.1155/2022/1940761. [百度学术]
Terri M, Trionfetti F, Montaldo C, et al. Mechanisms of peritoneal fibrosis: focus on immune cells-peritoneal stroma interactions[J]. Front Immunol, 2021, 12:607204. doi: 10.3389/fimmu.2021.607204. [百度学术]
Lho Y, Do JY, Heo JY, et al. Effects of TGF-β1 receptor inhibitor GW788388 on the epithelial to mesenchymal transition of peritoneal mesothelial cells[J]. Int J Mol Sci, 2021, 22(9):4739. doi: 10.3390/ijms22094739. [百度学术]
Heo JY, Do JY, Lho Y, et al. TGF-β1 receptor inhibitor SB525334 attenuates the epithelial to mesenchymal transition of peritoneal mesothelial cells via the TGF-β1 signaling pathway[J]. Biomedicines, 2021, 9(7):839. doi: 10.3390/biomedicines9070839. [百度学术]
Tsai JM, Sinha R, Seita J, et al. Surgical adhesions in mice are derived from mesothelial cells and can be targeted by antibodies against mesothelial markers[J]. Sci Transl Med, 2018, 10(469):eaan6735. doi: 10.1126/scitranslmed.aan6735. [百度学术]
Sudo M, Xu JY, Mitani K, et al. Antithrombin together with NETs inhibitor protected against postoperative adhesion formation in mice[J]. Cell Physiol Biochem, 2021, 55(4):400-412. doi: 10.33594/000000392. [百度学术]