网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

Ⅱ型脱碘酶在甲状腺疾病中的研究进展

  • 许丹晴 1
  • 张淼 1
  • 周力 2
  • 丁金旺 3
  • 彭友 2
1. 浙江中医药大学第四临床医学院,浙江 杭州 310053; 2. 西湖大学医学院附属杭州市第一人民医院 肿瘤外科,浙江 杭州 310006; 3. 浙江省肿瘤医院 甲状腺外科,浙江 杭州 310022

中图分类号: R581.9

最近更新:2024-06-06

DOI:10.7659/j.issn.1005-6947.2024.05.014

  • 全文
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

Ⅱ型脱碘酶(D2)是一种重要的含硒蛋白酶,负责将甲状腺素(T4)的外环去碘化,形成生物活性更高的三碘甲状腺素(T3),从而调节体内的新陈代谢、生长发育和能量平衡。D2的活性受到多种因素的调控,包括自身甲状腺激素水平、cAMP途径、泛素化、内质网应激以及环境等。D2不仅与甲状腺疾病的发生、发展密切相关,而且在调节细胞增殖方面具有重要作用,因此被认为可能是有用的癌症标志物。此外,Ⅱ型脱碘酶基因(DIO2)Thr92Ala多态性已被证实是甲状腺疾病的相关因素,了解这种多态性与甲状腺疾病的关系,不仅可以帮助预测个体患病的风险,还有望为个性化治疗提供依据。本综述重点介绍D2的调控机制及其在甲状腺疾病中的重要作用,以及DIO2 Thr92Ala多态性在疾病发展中的影响,为今后的研究与临床实践提供指导。

甲状腺分泌的甲状腺素(T4)转化为三碘甲状腺素(T3),以发挥其生物活性,这种转化受Ⅰ型脱碘酶(type Ⅰ deiodinase,D1)和Ⅱ型脱碘酶(type Ⅱ deiodinase,D2)调节,其中还包括一种灭活酶,即Ⅲ型脱碘酶(type Ⅲ deiodinase,D3),可以同时灭活T4和T3。甲状腺的生物活性主要是由D2调控,由Ⅱ型脱碘酶基因(type Ⅱ iodothyronine deiodinase gene,DIO2)编码,主要调节体内的新陈代谢、生长发育和能量平[

1-2]。近年来,随着对D2的深入了解,研究者们发现D2的活性受到多种因素的调控,包括自身甲状腺激素水平、cAMP途径、泛素化、内质网应激以及环境等因素。而D2在甲状腺疾病的研究中扮演着关键角色,它不仅与甲状腺疾病的发生、发展密切相关,而且在调节细胞增殖方面具有重要作用,因此被认为可能是有用的癌症标志[3-6]。此外,DIO2 Thr92Ala多态性已被证实是甲状腺疾病的相关因素,了解这种多态性与甲状腺疾病的关系,不仅可以帮助预测个体患病的风险,还有望为个性化治疗提供依[7-8]。本综述重点介绍D2的调控机制及其在甲状腺疾病中的重要作用,以及DIO2 Thr92Ala多态性在疾病发展中的影响,为理解甲状腺疾病的发病机制、癌症的早期诊断和个性化治疗提供线索。

1 D2的调控机制

1.1 D2的代谢

D2是一种经典的Ⅰ型膜蛋白,驻留在内质网膜上,由于泛素化和蛋白酶体的摄取,它的半衰期相对较短(约45 min)。在健康人体内,大约30%的血清T3来自甲状腺分泌,70%来自D1和D2催化的T4向T3的甲状腺外转[

9]。D2主要表达于下丘脑、垂体、甲状腺、骨骼肌、心肌等组织的细胞膜上,功能是将T4脱碘转化为T3,通过外环去碘激活T4,从而调节靶细胞内的T3[10-13]。D2对T4具有较高的亲和力,局部调节下丘脑-垂体-甲状腺轴负反馈,与甲状腺激素受体β2结合后抑制促甲状腺激素释放激素(TRH)、促甲状腺激素(TSH)的表[14-15]。D2在甲状腺激素的代谢中起着关键作用,它直接影响着体内的新陈代谢、生长发育和能量平衡,对维持身体内部环境的稳定性至关重要。

1.2 调节D2的cAMP途径

D2的调控受到转录和转录后的精密控制,其启动由各种发育、代谢或环境线索触发,包括肾上腺素能和外源物激活的cAMP途径。DIO2作为cAMP的响应基因,主要受肾上腺素/cAMP信号通路的调控,之前的研究指出,TSH和TSH受体(TSHR)的相互作用通过产生cAMP影响了位于DIO2启动子区域上游的cAMP响应基因。由于DIO2启动子区域含有一个cAMP反应元件,这导致在共转染蛋白激酶A的催化亚基上,DIO2启动子活性增加了10[

14]。这些发现突显了cAMP途径在D2调控中的关键作用。

1.3 D2泛素化

D2的泛素化是一种修饰D2半衰期的分子机制,它通过将泛素与D2结合,使酶失活并在蛋白酶体中被靶向降解,泛素化被认为是通过破坏D2∶D2二聚体的构象而使D2失活,这对酶活性至关重[

16]。泛素化过程中形成的K48连接的泛素链,涉及WSB-1和TEB4两种泛素连接酶。值得注意的是,活性的D2也可以通过酶的去泛素化修饰来恢复。因此,除下丘脑D2泛素化水平较低外,泛素化/去泛素化是许多组织中D2活性调节的重要动态机[17]。这种调控机制维持了D2在细胞内的稳定性和活性,对甲状腺激素的合成和释放产生重要影响。

1.4 D2内质网应激

内质网应激通过抑制D2从头合成来降低D2活性。在内质网应激期间,D2活性和蛋白质水平迅速降低,从而有效地降低了D2表达细胞中的细胞内T3产生和甲状腺激素信号传导。而D2活性和局部T3产生的损失是由真核引发因子2(eIF2a)途径有效抑制D2 mRNA翻译的结[

18],当表达D2的细胞暴露于不同的内质网应激因子后,D2活性在1 h内降低,内质网应激标志物显著增加。但这种下调不依赖于DIO2的转录调控,因为内质网应激不改变DIO2 mRNA水平,而这种D2活性的丧失会导致D2介导的T3显著降[19]

1.5 碘过量下的D2

Sun[

20]为研究碘摄入量与D2之间的关系,将140只雄性Wistar大鼠随机分为5组,分别给予不同碘剂量后,通过对小鼠下丘脑组织进行冷冻切片以评估DIO2表达、DIO2活性和单羧酸转运蛋白8(monocarboxylate transporter 8,MCT8)表达情况。结果显示,随着碘摄入量的增加,下丘脑中DIO2的表达和活性在各时间点均呈增加趋势,大鼠下丘脑MCT8表达也增加,表明碘过量影响下丘脑中DIO2、TRH和MCT8的水平。碘过量会增加D2在下丘脑中的表达,导致T4更多地转化为T3,T3经由MCT8转运体及伸长细胞进入室旁核的促垂体区域及合成TRH细胞区域内,抑制下丘脑TRH的产生,进而降低外周血清TRH水平,即大鼠下丘脑D2水平与血清TRH水平呈负相关。

2 DIO2 Thr92Ala多态性

DIO2多态性,特别是其中的Thr92Ala多态性,是当前甲状腺激素代谢领域备受关注的研究课题。这种多态性指的是DIO2中的一种常见基因变异,其中第92位密码子由苏氨酸(Thr)变为丙氨酸(Ala)。这一变异导致了D2结构上的微小改变,但其对甲状腺激素代谢和相关疾病的影响却是显著的。分子生物学研究表明,D2-Thr和D2-Ala具有类似的亚细胞定位,已被确定与D2速率降低有[

21-22]

DIO2中的Thr92Ala多态性在甲状腺激素代谢和治疗反应方面至关重要。口服左旋甲状腺素(L-T4)抑制TSH水平是分化型甲状腺癌(differentiated thyroid cancer,DTC)患者术后临床管理和治疗中最常用的方法,实际上,约70%的循环T3是由D2介导的T4向T3的外周转化产生的,然而,并非所有接受L-T4治疗的甲状腺切除患者在外周组织中具有相同的将T4转化为T3的能力,最近关于DIO2多态性的研究试图解决接受L-T4治疗的受试者转换T4为T3的异质性能力,发现这种差异与DIO2 Thr92Ala多态性密切相关;另有研[

23-26]在接受甲状腺全切除术和放射性碘治疗的DTC患者中发现,当存在DIO2 Thr92Ala多态性时,需要更高的L-T4剂量才能达到TSH抑制的目标值,具体来说,Ala/Ala纯合子受试者需要比该多态性非携带者高20%左右的L-T4水平。与此同时,通过比较TSH水平与术后状态相似的患者的术前激素状态,并分析了患者的DIO2基因型,携带Thr92Ala的甲状腺切除患者,细胞内和血清T3浓度降低的风险增加,而L-T4不能充分补[27]。DIO2 Thr92Ala多态性与TSH抑制治疗相关,降低了甲状腺激素信号和扰乱了正常的细胞功能,为个体化治疗甲状腺切除术后患者以及寻求更好的左旋三碘甲腺原氨酸(L-T3)+L-T4联合治疗提供了重要依据,也突显了DIO2 Thr92Ala多态性在甲状腺激素代谢和治疗中的重要[28-32]

而为了研究DIO2上的三个单核苷酸多态性(SNPs)位点rs225014(Thr92Ala)、rs225015、rs12885300(ORFa-Gly3Asp)和单羧酸转运蛋白10(MCT10)基因上的SNP位点(rs17606253)的关联,Carlé[

33]进行了一项包含L-T4单药治疗或L-T3+L-T4联合治疗的术后TSH水平抑制不佳患者的随机、临床、交叉试验,证明DIO2 rs225014(Thr92Ala)和MCT10(rs17606253)多态性的联合作用增强了患者对L-T4+L-T3替代治疗的偏好。

因此,在甲状腺乳头状癌(papillary thyroid carcinoma,PTC)患者的DIO2多态性可能在术后TSH水平抑制不佳的精确定义和个体化治疗方法中发挥关键作用,提示这些患者应接受DIO2多态性的筛查。然而,关于DIO2 Thr92Ala的作用及其临床影响仍存在争议。尽管普遍认为DIO2 Thr92Ala可能降低D2的速度,但由于该单核苷酸多态性在普通人群中较为常见,且所有具有该多态性的大部分受试者在甲状腺功能检测中未表现出典型特征,这一结论仍有待更多研究的证[

34-35]。为了更深入地探讨DIO2多态性与代谢变化和患者临床状况之间的关系,需要进行更为详尽的研究,以便更好地了解这一复杂的相互作用,为患者提供更为个性化、有效的治疗方案。

3 D2与甲状腺疾病

3.1 D2与自身免疫性疾病

甲状腺功能亢进的主要原因之一是Graves病,又称毒性弥漫性甲状腺肿,是一种自身免疫性甲状腺疾病。这种疾病是多种因素的综合结果,是由于机体免疫系统紊乱引起[

36]。最近的相关研究揭示了DIO2 Ala92Thr多态性的重要性,研究发现,拥有AA基因型的患者在Graves病的发展、疾病严重程度以及患者缓解率方面具有保护作用。这一多态性可能在存在促甲状腺激素受体抗体(TRAb)的情况下,有助于调节Graves病的发展和病程,而非引发该疾病。由于TRAb增加甲状腺内DIO2的表达和活性,导致甲状腺内DIO2活性的提高可能是导致Graves病患者甲状腺T3生成相对增加的重要原因之一。这一发现为更好地了解Graves病的发病机制提供了重要线索,也为未来的治疗策略研发提供了有益信[37-38]

桥本甲状腺炎以甲状腺特异性自身抗体为特征,是最常见的自身免疫性疾病之[

39]。通过采用PCR-RFLP技术对桥本甲状腺炎患者以及健康对照者进行DIO2多态性检测,结果提示DIO2的低表达可能与桥本甲状腺炎有关。由于T3抑制炎性细胞因子、黏附分子和抗凋亡因子的表达,DIO2的低遗传表达能力B细胞淋巴瘤2(Bcl-2)可能通过抑制T4向T3的转化,促进自身免疫性炎症,诱导桥本甲状腺炎的发生和严重程度有[40]

3.2 D2与甲状腺癌

脱碘酶在不同类型的癌症中的表达呈现多样性,这暗示脱碘酶可能是一种有用的癌症标志物,或者在调节细胞增殖方面发挥作用。在癌细胞中,脱碘酶的复杂和动态表达受到生长因子、致癌蛋白和miRNA网络的调控。这种精细的调节使得癌细胞处于动态变化的甲状腺激素浓度环境中,从而刺激或抑制细胞功[

41]。此外,甲状腺激素影响不同的致癌和抑癌途径,这些途径通常牵涉到DIO2平衡表达,进而形成一个复杂的循环回路,放大或减弱肿瘤生[2]

脱碘酶及其与其他经典途径的相互作用可能成为对抗肿瘤发生过程的潜在重要靶点。脱碘酶的表达紊乱不仅仅限于调节肿瘤细胞内T4和T3水平,更是反映了参与致癌关键信号通路的过度激活或抑制。由于不同肿瘤具有独特的组织特征,研究脱碘酶在特定肿瘤环境中的作用有助于更好地理解其是肿瘤细胞失衡的原因还是结果。这种研究不仅有助于揭示肿瘤发生机制,也为开发针对性的抗癌治疗提供了重要线[

42]

甲状腺乳头状癌(papillary thyroid carcinoma,PTC)是甲状腺最常见的恶性肿瘤类型,而D2在该癌症的发展和进展过程中可能发挥一定的作[

43]。研[23, 42]发现,与周围非肿瘤组织相比,PTC组织中D2的活性和D2 mRNA表达均降低。这一发现揭示了D2在PTC中的重要作用,这种D2表达的降低可能导致细胞内激素水平下降,进而有利于肿瘤的增殖和扩散,为肿瘤细胞提供了有利的生长环境。

D2的过表达导致人类疾病的潜力已被明确证明,同样,在甲状腺滤泡状癌(follicular thyroid cancer,FTC)中发现D2活性高于正常甲状腺组织,并且D2的异常表达可引起FTC转移患者的甲状腺毒[

3]。在罕见的转移性FTC病例中,D2的过度表达可以使患者在服用标准剂量的T4替代或抑制治疗的同时,由于恶性细胞中T3的生成增加而导致甲状腺毒[44]

甲状腺髓样癌(medullary thyroid carcinoma,MTC)是一种罕见的起源于滤泡旁C细胞的神经内分泌恶性肿[

45]。早期研究表明甲状腺中的D2活性来源于滤泡而不是滤泡旁C细胞。但Meyer[46]发现,从12例未经选择的MTC患者中获得的所有MTC样本中均检测到D2转录物,且D2活性水平与周围正常滤泡组织相当。由此推断D2在C细胞来源的MTC中也呈现高表达。在人类MTC细胞系TT细胞中的进一步分析表明,D2的表达受甲状腺激素的下调,而cAMP类似物和地塞米松可增强D2的表达。在所有MTC样本和TT细胞中也检测到甲状腺激素受体α1和β,这表明在该肿瘤组织中D2局部产生的T3可能具有潜在的作用。

甲状腺未分化癌(undifferentiated carcinoma)又称间变性癌(anaplastic carcinoma,ATC)是一种罕见的侵袭性肿瘤,仅占所有甲状腺癌的1%,但其导致的死亡约占所有甲状腺癌死亡的1/3[

47]。与PTC相比,D2在ATC中高表达,并且D2来源的T3是ATC细胞增殖所必需的。这是因为D2抑制与ATC细胞G1期生长停滞和诱导细胞衰老有关,同时与细胞迁移和侵袭能力降低有关。研[48-49]结果表明,D2的作用对ATC的增殖和侵袭至关重要,为ATC的治疗提供了一个潜在的新的治疗靶点。

4 总 结

综上所述,D2不仅在甲状腺激素代谢中具有关键作用,还在甲状腺疾病的发展和癌症调节中发挥重要功能。通过深入研究D2及其相关基因多态性的研究为理解甲状腺疾病的发生机制提供了重要参考,不仅可以加深对甲状腺激素代谢的理解,还有望为个体化治疗和疾病预防提供新的研究方向,对促进临床医学的发展和提高患者生活质量具有积极影响。D2在甲状腺激素代谢调节及其甲状腺疾病中的作用机制仍缺乏深入了解,对脱碘酶多态性在临床实践中的重要性仍不确定,有待进一步研究探讨。

作者贡献声明

彭友、许丹晴负责论文选题,整体框架设计;许丹晴、张淼负责论文资料收集;许丹晴负责论文撰写;周力、丁金旺、许丹晴负责论文修订。

利益冲突

所有作者均声明不存在利益冲突。

参考文献

1

Sabatino L, Vassalle C, Del Seppia C, et al. Deiodinases and the three types of thyroid hormone deiodination reactions[J]. Endocrinol Metab (Seoul), 2021, 36(5):952-964. doi: 10.3803/EnM.2021.1198. [百度学术] 

2

Luongo C, Dentice M, Salvatore D. Deiodinases and their intricate role in thyroid hormone homeostasis[J]. Nat Rev Endocrinol, 2019, 15(8):479-488. doi: 10.1038/s41574-019-0218-2. [百度学术] 

3

Angela De Stefano M, Porcelli T, Schlumberger M, et al. Deiodinases in thyroid tumorigenesis[J]. Endocr Relat Cancer, 2023, 30(5):e230015. doi: 10.1530/ERC-23-0015. [百度学术] 

4

Deng Y, Han Y, Gao S, et al. The physiological functions and polymorphisms of type Ⅱ deiodinase[J]. Endocrinol Metab (Seoul), 2023, 38(2):190-202. doi: 10.3803/EnM.2022.1599. [百度学术] 

5

Hernandez A, Martinez ME, Ng L, et al. Thyroid hormone deiodinases: dynamic switches in developmental transitions[J]. Endocrinology, 2021, 162(8):bqab091. doi: 10.1210/endocr/bqab091. [百度学术] 

6

Lin HY, Chin YT, Yang SH, et al. Thyroid hormone, cancer, and apoptosis[J]. Compr Physiol, 2016, 6(3):1221-1237. doi: 10.1002/cphy.c150035. [百度学术] 

7

Luongo C, De Stefano MA, Ambrosio R, et al. Type 2 deiodinase Thr92Ala polymorphism and aging are associated with a decreased pituitary sensitivity to thyroid hormone[J]. Thyroid, 2023, 33(3):294-300. doi: 10.1089/thy.2022.0472. [百度学术] 

8

Wouters HJ, van Loon HC, van der Klauw MM, et al. No effect of the Thr92Ala polymorphism of deiodinase-2 on thyroid hormone parameters, health-related quality of life, and cognitive functioning in a large population-based cohort study[J]. Thyroid, 2017, 27(2):147-155. doi: 10.1089/thy.2016.0199. [百度学术] 

9

Maino F, Cantara S, Forleo R, et al. Clinical significance of type 2 iodothyronine deiodinase polymorphism[J]. Expert Rev Endocrinol Metab, 2018, 13(5):273-277. doi: 10.1080/17446651.2018.1523714. [百度学术] 

10

Bianco AC, Dumitrescu A, Gereben B, et al. Paradigms of dynamic control of thyroid hormone signaling[J]. Endocr Rev, 2019, 40(4):1000-1047. doi: 10.1210/er.2018-00275. [百度学术] 

11

Moran C, Schoenmakers N, Visser WE, et al. Genetic disorders of thyroid development, hormone biosynthesis and signalling[J]. Clin Endocrinol (Oxf), 2022, 97(4):502-514. doi: 10.1111/cen.14817. [百度学术] 

12

Russo SC, Salas-Lucia F, Bianco AC. Deiodinases and the metabolic code for thyroid hormone action[J]. Endocrinology, 2021, 162(8):bqab059. doi: 10.1210/endocr/bqab059. [百度学术] 

13

Paragliola RM, Corsello A, Concolino P, et al. Iodothyronine deiodinases and reduced sensitivity to thyroid hormones[J]. Front Biosci (Landmark Ed), 2020, 25(2):201-228. doi: 10.2741/4803. [百度学术] 

14

Köhrle J, Frädrich C. Deiodinases control local cellular and systemic thyroid hormone availability[J]. Free Radic Biol Med, 2022, 193:59-79. doi: 10.1016/j.freeradbiomed.2022.09.024. [百度学术] 

15

Cicatiello AG, Di Girolamo D, Dentice M. Metabolic effects of the intracellular regulation of thyroid hormone: old players, new concepts[J]. Front Endocrinol (Lausanne), 2018, 9:474. doi: 10.3389/fendo.2018.00474. [百度学术] 

16

Werneck de Castro JP, Fonseca TL, Ueta CB, et al. Differences in hypothalamic type 2 deiodinase ubiquitination explain localized sensitivity to thyroxine[J]. J Clin Invest, 2015, 125(2):769-781. doi: 10.1172/JCI77588. [百度学术] 

17

Drigo RAE, Bianco AC. Type 2 deiodinase at the crossroads of thyroid hormone action[J]. Int J Biochem Cell Biol, 2011, 43(10):1432-1441. doi: 10.1016/j.biocel.2011.05.016. [百度学术] 

18

Arrojo E Drigo R, Fonseca TL, Castillo M, et al. Endoplasmic reticulum stress decreases intracellular thyroid hormone activation via an eIF2a-mediated decrease in type 2 deiodinase synthesis[J]. Mol Endocrinol, 2011, 25(12):2065-2075. doi: 10.1210/me.2011-1061. [百度学术] 

19

Bianco AC, da Conceição RR. The deiodinase trio and thyroid hormone signaling[J]. Methods Mol Biol, 2018, 1801:67-83. doi: 10.1007/978-1-4939-7902-8_8. [百度学术] 

20

Sun Y, Du X, Shan ZY, et al. Effects of iodine excess on serum thyrotropin-releasing hormone levels and type 2 deiodinase in the hypothalamus of Wistar rats[J]. Br J Nutr, 2022, 127(11):1631-1638. doi: 10.1017/S0007114521002592. [百度学术] 

21

Torlontano M, Durante C, Torrente I, et al. Type 2 deiodinase polymorphism (threonine 92 alanine) predicts L-thyroxine dose to achieve target thyrotropin levels in thyroidectomized patients[J]. J Clin Endocrinol Metab, 2008, 93(3):910-913. doi: 10.1210/jc.2007-1067. [百度学术] 

22

Ricci C, Kakularam KR, Marzocchi C, et al. Thr92Ala polymorphism in the type 2 deiodinase gene: an evolutionary perspective[J]. J Endocrinol Invest, 2020, 43(12):1749-1757. doi: 10.1007/s40618-020-01287-5. [百度学术] 

23

AlRasheed MM, AlAnzi A, AlShalhoub R, et al. A study of the role of DIO1 and DIO2 polymorphism in thyroid cancer and drug response to therapy in the Saudi population[J]. Saudi Pharm J, 2019, 27(6):841-845. doi: 10.1016/j.jsps.2019.05.005. [百度学术] 

24

Razvi S, Mrabeti S, Luster M. Managing symptoms in hypothyroid patients on adequate levothyroxine: a narrative review[J]. Endocr Connect, 2020, 9(11):R241-250. doi: 10.1530/EC-20-0205. [百度学术] 

25

Hernandez A. Cognitive function in hypothyroidism: what is that deiodinase again?[J]. J Clin Invest, 2019, 129(1):55-57. doi: 10.1172/JCI125203. [百度学术] 

26

Jo S, Fonseca TL, Bocco BMLC, et al. Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain[J]. J Clin Invest, 2019, 129(1):230-245. doi: 10.1172/JCI123176. [百度学术] 

27

Castagna MG, Dentice M, Cantara S, et al. DIO2 Thr92Ala reduces deiodinase-2 activity and serum-T3 levels in thyroid-deficient patients[J]. J Clin Endocrinol Metab, 2017, 102(5):1623-1630. doi: 10.1210/jc.2016-2587. [百度学术] 

28

Bianco AC, Kim BS. Pathophysiological relevance of deiodinase polymorphism[J]. Curr Opin Endocrinol Diabetes Obes, 2018, 25(5):341-346. doi: 10.1097/MED.0000000000000428. [百度学术] 

29

Penna GC, Salas-Lucia F, Ribeiro MO, et al. Gene polymorphisms and thyroid hormone signaling: implication for the treatment of hypothyroidism[J]. Endocrine, 2023. doi: 10.1007/s12020-023-03528-y. [Online ahead of print] [百度学术] 

30

Zheng XK, Zhong LC, Zhou TJ, et al. Association between TSH suppression therapy and type 2 deiodinase gene polymorphism in differentiated thyroid carcinoma[J]. Endokrynol Pol, 2023. doi: 10.5603/EP.a2023.0043. [Online ahead of print] [百度学术] 

31

Wiersinga WM. THERAPY OF ENDOCRINE DISEASE: T4 + T3 combination therapy: is there a true effect?[J]. Eur J Endocrinol, 2017, 177(6):R287-296. doi: 10.1530/eje-17-0645. [百度学术] 

32

Hennessey JV. Levothyroxine monotherapy: what works better for the individual with hypothyroidism?[J]. Endocr Pract, 2023, 29(7):572-580. doi: 10.1016/j.eprac.2022.12.013. [百度学术] 

33

Carlé A, Faber J, Steffensen R, et al. Hypothyroid patients encoding combined MCT10 and DIO2 gene polymorphisms may prefer L-T3 + L-T4 combination treatment–data using a blind, randomized, clinical study[J]. Eur Thyroid J, 2017, 6(3):143-151. doi: 10.1159/000469709. [百度学术] 

34

Park E, Jung J, Araki O, et al. Concurrent TSHR mutations and DIO2 T92A polymorphism result in abnormal thyroid hormone metabolism[J]. Sci Rep, 2018, 8(1):10090. doi: 10.1038/s41598-018-28480-0. [百度学术] 

35

Shakir MKM, Brooks DI, McAninch EA, et al. Comparative effectiveness of levothyroxine, desiccated thyroid extract, and Levothyroxine+Liothyronine in hypothyroidism[J]. J Clin Endocrinol Metab, 2021, 106(11):e4400-4413. doi: 10.1210/clinem/dgab478. [百度学术] 

36

Antonelli A, Ferrari SM, Ragusa F, et al. Graves' disease: Epidemiology, genetic and environmental risk factors and viruses[J]. Best Pract Res Clin Endocrinol Metab, 2020, 34(1):101387. doi: 10.1016/j.beem.2020.101387. [百度学术] 

37

Shahida B, Planck T, Åsman P, et al. Study of deiodinase type 2 polymorphisms in Graves' disease and ophthalmopathy in a Swedish population[J]. Eur Thyroid J, 2018, 7(6):289-293. doi: 10.1159/000490892. [百度学术] 

38

Comarella AP, Vilagellin D, Bufalo NE, et al. The polymorphic inheritance of DIO2 rs225014 may predict body weight variation after Graves' disease treatment[J]. Arch Endocrinol Metab, 2021, 64(6):787-795. doi: 10.20945/2359-3997000000295. [百度学术] 

39

Ralli M, Angeletti D, Fiore M, et al. Hashimoto's thyroiditis: an update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation[J]. Autoimmun Rev, 2020, 19(10):102649. doi: 10.1016/j.autrev.2020.102649. [百度学术] 

40

Inoue N, Watanabe M, Katsumata Y, et al. Functional polymorphisms of the type 1 and type 2 iodothyronine deiodinase genes in autoimmune thyroid diseases[J]. Immunol Invest, 2018, 47(5):534-542. doi: 10.1080/08820139.2018.1458861. [百度学术] 

41

Nappi A, de Stefano MA, Dentice M, et al. Deiodinases and cancer[J]. Endocrinology, 2021, 162(4):bqab016. doi: 10.1210/endocr/bqab016. [百度学术] 

42

Goemann IM, Marczyk VR, Romitti M, et al. Current concepts and challenges to unravel the role of iodothyronine deiodinases in human neoplasias[J]. Endocr Relat Cancer, 2018, 25(12):R625-645. doi: 10.1530/ERC-18-0097. [百度学术] 

43

Lam AK. Papillary thyroid carcinoma: current position in epidemiology, genomics, and classification[J]. Methods Mol Biol, 2022, 2534:1-15. doi: 10.1007/978-1-0716-2505-7_1. [百度学术] 

44

St Germain DL, Galton VA, Hernandez A. Defining the roles of the iodothyronine deiodinases: current concepts and challenges[J]. Endocrinology, 2009, 150(3):1097-1107. doi: 10.1210/en.2008-1588. [百度学术] 

45

Jayasinghe R, Basnayake O, Jayarajah U, et al. Management of medullary carcinoma of the thyroid: a review[J]. J Int Med Res, 2022, 50(7):3000605221110698. doi: 10.1177/03000605221110698. [百度学术] 

46

Meyer EL, Goemann IM, Dora JM, et al. Type 2 iodothyronine deiodinase is highly expressed in medullary thyroid carcinoma[J]. Mol Cell Endocrinol, 2008, 289(1/2):16-22. doi: 10.1016/j.mce.2008.04.009. [百度学术] 

47

Ibrahimpasic T, Ghossein R, Shah JP, et al. Poorly differentiated carcinoma of the thyroid gland: current status and future prospects[J]. Thyroid, 2019, 29(3):311-321. doi: 10.1089/thy.2018.0509. [百度学术] 

48

Angela De Stefano M, Porcelli T, Ambrosio R, et al. Type 2 deiodinase is expressed in anaplastic thyroid carcinoma and its inhibition causes cell senescence[J]. Endocr Relat Cancer, 2023, 30(5):e230016. doi: 10.1530/ERC-23-0016. [百度学术] 

49

Okazaki-Hada M, Maruoka A, Yamamoto M, et al. Poorly differentiated thyroid carcinoma coexisting with Graves' disease involving T3 thyrotoxicosis due to increased D1 and D2 activities[J]. Thyroid, 2021, 31(10):1592-1596. doi: 10.1089/thy.2021.0082. [百度学术]