摘要
胆道恶性肿瘤(BTC)根据解剖部位分为胆囊癌、肝内胆管癌、肝外胆管癌,其发病隐匿、早期诊断困难,患者预后差,手术治疗作为唯一可以根治的治疗方式效果却不理想,化疗对于此类患者效果较差且安全性难以保证。靶向治疗是近年来新兴的治疗手段,可以靶向针对患者肿瘤细胞中的特定位点,在疗效、安全性方面都比传统治疗手段有较大幅度的提升。血管内皮生长因子及其受体是多种实体肿瘤中表达的抗肿瘤靶点之一,在BTC中也有较高水平的表达。二者相互结合后,通过多条信号传导通路将生物学信号传入细胞内进而调控肿瘤的血管生成、血管转移。针对血管内皮生长因子及其受体的靶向治疗在BTC中已有一定成效。贝伐珠单抗是第一种应用于临床的血管内皮生长因子抑制剂,其联合以吉西他滨为基础的系统化疗方案、免疫检查点抑制剂(ICI)或酪氨酸激酶抑制剂(TKI)都在BTC中收获了较好的效果,但部分仍未达预期,需更多临床试验进一步探索。雷莫卢单抗是一种血管内皮生长因子受体抑制剂,在BTC中研究较少,目前只在联合系统化疗、ICI方面有一定应用。而针对血管内皮生长因子及其受体的TKI目前种类繁多,如仑伐替尼、索拉非尼、阿帕替尼、安罗替尼。仑伐替尼无疑是当前肝胆系统恶性肿瘤中研究的重点,作为一种多靶点TKI,仑伐替尼联合ICI和系统化疗在BTC患者中取得了令人鼓舞的疗效,在大幅度改善患者预后的同时安全性也得到了保障。这为未来的综合治疗手段指明了方向。其他TKI如安罗替尼、阿帕替尼在BTC中也有较为广泛的应用。多种靶向药物在BTC中已开展了广泛的临床研究,其中不乏某些药物为单一靶点抑制剂,这便提示临床工作者,在给予患者靶向药物前,应充分考虑到患者体内目标靶点的表达情况,这样才能做到精准治疗、精确治疗,最大程度提升治疗效果。未来的研究应以精准治疗和系统治疗并重,以改善患者生存、提高其生活质量为唯一目的。
China Journal of General Surgery, 2024, 33(2):265-272.
胆道恶性肿瘤(biliary tract cancers,BTC)是一种具有高度侵袭性的上皮细胞来源肿瘤,其早期症状不明显,不易引起足够重视,大多数患者确诊时已是晚期,预后较差,5年生存率只有5%~15
按照病灶的解剖部位,BTC可分为胆囊癌(gallbladder cancer,GBC)、肝内胆管癌(intrahepatic cholangiocarcinoma,ICC)、肝外胆管癌(extrahepatic cholangiocarcinoma,ECC),其中大部分为GBC,其次是ECC和IC
VEGF又被称为血管通透因子(vascular permeability factor,VPF),是一类具有高度生物学活性的信号分子,与下游受体结合后可诱导组织新生血管的生长、增加血管通透性、促使内皮细胞增生。目前已发现六种VEGF家族成员分别为:VEGF-A、VEGF-B、VEGF-C、VEGF-D、VEGF-E以及胎盘生长因子(placental growth factor,PIGF),它们空间结构类似,但生物学功能各有差异。其中的VEGF-A是刺激血管生成的最主要细胞因子,编码该因子的基因定位于6q21,转录时其外显子按照不同的顺序拼接可以形成多种异构体,其中以VEGF121和VEGF165含量最为丰富。在肿瘤组织中,缺血缺氧的微环境通过缺氧诱导因子(hypoxia inducible factor,HIF)及其他因子共同刺激内皮细胞及肿瘤细胞产生VEGF-A,从而加速肿瘤血管的生
VEGF的下游受体包括VEGFR、神经纤毛蛋白(neuropilin,NRP)、硫酸肝素蛋白多糖(heparan sulphate proteoglycan,HSPas)三大类,VEGF主要与VEGFR结合,也可与NRP或HSPas结合增强其生物学效
VEGF抑制剂包括雷珠单抗和贝伐珠单抗,前者用于治疗年龄相关黄斑变性(age related macular degeneration,AMD)和视网膜中央静脉阻塞(central retinal vein occlusion,CRVO)等眼底疾
该类方案联合的系统化疗以吉西他滨为基础用药,具体包括GEMCIS(吉西他滨+顺铂)、GEMOX(吉西他滨+奥沙利铂)、GC(吉西他滨+卡培他滨)。在一项对国人的回顾性研
已有研究对贝伐珠单抗联合GEMCIS方案的疗效与安全性进行了评估。在一项回顾性观察研
2021年报道了1例多发性转移的GBC患者在GEMCIS方案化疗失败后接受贝伐珠单抗联合GEMOX方案治疗,最终该例患者出现了部分缓解(partial response,PR)并且PFS延长了11个
贝伐珠单抗联合GC方案、CAPOX方案(卡培他滨+奥沙利铂)或FOLFIRI方案(氟尿嘧啶+亚叶酸钙+伊立替康)等其他治疗方案也有一定研究,但目前临床应用较少,未取得明显进展,其治疗效果需要持续关注。
该类联合方案是近几年新出现的一种治疗策略,大量研究证实,该类联合治疗对BTC患者的生存情况有更为明显的改善。2022年有文
阿替利珠单抗是一种针对PD-L1的单克隆抗体,用于多种晚期实体肿瘤的治疗。在一项单臂研
该类联合方案的研究目前较少,主要为贝伐珠单抗联合EGFR抑制剂厄洛替尼。一项研
雷莫卢单抗是一种单克隆的VEGFR2抗体,其结构为包含两条轻链和两条重链的IgG,可以特异性结合到VEGFR2的ECD区域诱导其构象改变,从而阻碍VEGFA与VEGFR2的结
雷莫卢单抗联合PD-L1抑制剂帕博利珠单抗,关于该联合治疗在晚期非小细胞肺癌(non-small cell lung cancer,NSCLC)的研究中已有大量实
在胞内信号转导通路中,酪氨酸激酶可催化三磷酸腺苷(adenosine triphosphate,ATP)的γ位磷酸基团转移到ICD区域酪氨酸残基上,从而完成信号的传导。TKI类药物既可竞争性抑制ATP与酪氨酸激酶的相互结合,又可作为酪氨酸类似物与酪氨酸激酶结合,阻碍相应残基磷酸化。VEGFR属于受体酪氨酸激酶(receptor tyrosine kinase,RTKs)家族成员,已有多种TKI类药物靶向针对VEGFR,包括有仑伐替尼、索拉非尼、阿帕替尼、安罗替尼、阿昔替尼、舒尼替尼、索凡替尼等,部分已应用于多种实体肿瘤的治疗当
仑伐替尼是一种口服的小分子多激酶抑制剂,对于VEGFR1、VEGFR2、VEGFR3、PIGF、FGFR均有很强的抑制作用,在多个国家被批准成为治疗晚期肝细胞癌(hepatocellular carcinoma,HCC)的一线用
局部治疗手段是针对晚期肿瘤患者的一类特殊疗法,通常包括射频消融(radiofrequency ablation,RFA)、放射治疗(radiotherapy,RT)、肝动脉灌注化疗(hepatic artery infusion chemotherapy,HAIC)、经导管动脉化学栓塞(transcatheter arterial chemoembolization,TACE)。仑伐替尼+PD-L1抑制剂联合这些局部治疗方法对于晚期BTC同样有明显的效果。25例接受了仑伐替尼+特瑞普利单抗+局部治疗的患者相比另外24例只接受仑伐替尼+特瑞普利单抗的患者,获得了更长的mPFS和mOS,并且接受三联治疗的患者中有3例在治疗结束后进行了手术切
索拉非尼是一种广谱性的TKI类药物,不仅可以通过阻断VEGFR2、VEGFR3、血小板衍生生长因子受体β(platelet derived growth factor receptor β,PDGFR-β)抑制肿瘤血管生成,还可阻断Ras-Raf-MEK-ERK通路直接抑制肿瘤细胞的增殖。它在HCC的治疗中有着广泛的应
阿帕替尼是一种用于治疗胃肠道恶性肿瘤的TKI类药物,对于晚期BTC的治疗有一定辅助性作
安罗替尼是一种新型的多激酶抑制剂,在BTC治疗中联合PD-L1抑制剂的研究已初显成效。安罗替尼联合信迪利单抗的mPFS为6.5个月,mOS为12.3个
近期SAGC的研究成果已得到初步揭示,在安罗替尼+信迪利单抗+GEMCIS方案联合治疗组中,mPFS明显优于GEMCIS方案治疗组(HR=0.37,P<0.001),但主要研究终点1年OS率却差异无统计学意义(P=0.437)。亚组分析表明,高肿瘤突变负荷(high tumor mutation burden,TMB-H)的患者更能从联合治疗中获益。
其他TKI类药物,例如阿昔替
癌症疫苗是一种新兴的治疗技术,其原理为通过刺激机体针对肿瘤特异抗原的免疫系统,增强并维持T细胞免疫反应,从而控制肿瘤细胞的生
近年来,BTC治疗领域在快速发展,尤其针对特异靶点的精准治疗和联合多种方法的综合治疗已成为未来的主流趋势。大量的研究探索了不同种类组合治疗的方式,随着未来技术的发展,越来越多的靶向药物将得以开
作者贡献声明
杨阳参与文章选题,负责文献资料解读与文章撰写;王万祥负责文章总体设计、写作方向指导及文章最终审阅。
利益冲突
所有作者均声明不存在利益冲突。
参考文献
Zeng W, Mao R, Zhang Z, et al. Combination therapies for advanced biliary tract cancer[J]. J Clin Transl Hepatol, 2023, 11(2):490-501. doi:10.14218/JCTH.2022.00277. [百度学术]
Chen S, Han K, Song Y, et al. Current status, trends, and predictions in the burden of gallbladder and biliary tract cancer in China from 1990 to 2019[J]. Chin Med J, 2022, 135(14):1697-1706. doi:10.1097/CM9.0000000000002258. [百度学术]
Farha N, Dima, Ullah F, et al. Precision oncology targets in biliary tract cancer[J]. Cancers, 2023, 15(7):2105. doi:10.3390/cancers15072105. [百度学术]
游俊琦, 夏浩明, 黄子越, 等. 胆管癌药物治疗的研究进展[J]. 中国普通外科杂志, 2023, 32(2):287-295. doi:10.7659/j.issn.1005-6947.2023.02.015. [百度学术]
You JQ, Xia HM, Huang ZY, et al. Research advances in drug therapy of cholangiocarcinoma[J]. China Journal of General Surgery, 2023, 32(2):287-295. doi:10.7659/j.issn.1005-6947.2023.02.015. [百度学术]
Vogel A, Saborowski A. Current and future systemic therapies in biliary tract cancer[J]. Visc Med, 2021, 37(1):32-38. doi:10.1159/000513969. [百度学术]
Zhang Y, Esmail A, Mazzaferro V, et al. Newest therapies for cholangiocarcinoma: an updated overview of approved treatments with transplant oncology vision[J]. Cancers, 2022, 14(20):5074. doi:10.3390/cancers14205074. [百度学术]
Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development[J]. Cell, 2019, 176(6):1248-1264. doi:10.1016/j.cell.2019.01.021. [百度学术]
Sun XN, Cao WG, Wang X, et al. Prognostic impact of vascular endothelial growth factor-a expression in resected gallbladder carcinoma[J]. Tumour Biol, 2011, 32(6):1183-1190. doi:10.1007/s13277-011-0221-2. [百度学术]
Melincovici C S, Boşca A B, Şuşman S, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis[J]. Rom J Morphol Embryol, 2018, 59(2):455-467. [百度学术]
Eguchi R, Kawabe JI, Wakabayashi I. VEGF-independent angiogenic factors: beyond VEGF/VEGFR2 signaling[J]. J Vasc Res, 2022, 59(2):78-89. doi:10.1159/000521584. [百度学术]
Eichenbaum DA, Ahmed A, Hiya F. Ranibizumab port delivery system: a clinical perspective[J]. BMJ Open Ophthalmol, 2022, 7(1):e001104. doi:10.1136/bmjophth-2022-001104. [百度学术]
Garcia J, Hurwitz HI, Sandler AB, et al. Bevacizumab (Avastin®) in cancer treatment: a review of 15years of clinical experience and future outlook[J]. Cancer Treat Rev, 2020, 86:102017. doi:10.1016/j.ctrv.2020.102017. [百度学术]
Wang L, Zhu H, Zhao Y, et al. Comprehensive molecular profiling of intrahepatic cholangiocarcinoma in the Chinese population and therapeutic experience[J]. J Transl Med, 2020, 18(1):273. doi:10.1186/s12967-020-02437-2. [百度学术]
Pei SN, Liao CK, Chen YS, et al. A novel combination of bevacizumab with chemotherapy improves therapeutic effects for advanced biliary tract cancer: a retrospective, observational study[J]. Cancers, 2021, 13(15):3831. doi:10.3390/cancers13153831. [百度学术]
Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer[J]. N Engl J Med, 2010, 362(14):1273-1281. doi:10.1056/NEJMoa0908721. [百度学术]
Aagre SV, Tonse M, Talele A, et al. Bevacizumab based chemotherapy is a promising option in metastatic gallbladder adenocarcinoma[J]. Mol Clin Oncol, 2021, 15(2):153. doi:10.3892/mco.2021.2315. [百度学术]
Bréchon M, Dior M, Dréanic J, et al. Addition of an antiangiogenic therapy, bevacizumab, to gemcitabine plus oxaliplatin improves survival in advanced biliary tract cancers[J]. Invest New Drugs, 2018, 36(1):156-162. doi:10.1007/s10637-017-0492-6. [百度学术]
Guo L, Zhang J, Liu X, et al. Successful treatment of metastatic gallbladder carcinoma with PD-L1 expression by the combination of PD-1 inhibitor plus bevacizumab with chemotherapy: a case report[J]. Onco Targets Ther, 2022, 15:629-636. doi:10.2147/OTT.S346635. [百度学术]
齐瑞丽, 张勇丹, 王华庆, 等. 免疫检查点抑制剂联合抗血管生成治疗恶性肿瘤的作用机制[J]. 临床肿瘤学杂志, 2020, 25(7):664-668. DOI: 10.3969/j.issn.1009-0460.2020.07.016 [百度学术]
Qi RL, Zhang YD, Wang HQ, et al. Mechanism of immune checkpoint inhibitor combined with antiangiogenic therapy in the treatment of malignant tumors[J]. Chinese Clinical Oncology, 2020, 25(7):664-668. DOI: 10.3969/j.issn.1009-0460.2020.07.016 [百度学术]
Wang K, Liu ZH, Yu HM, et al. Efficacy and safety of a triple combination of atezolizumab, bevacizumab plus GEMOX for advanced biliary tract cancer: a multicenter, single-arm, retrospective study[J]. Therap Adv Gastroenterol, 2023, 16:17562848231160630. doi:10.1177/17562848231160630. [百度学术]
Hack SP, Verret W, Mulla S, et al. IMbrave 151: a randomized phase Ⅱ trial of atezolizumab combined with bevacizumab and chemotherapy in patients with advanced biliary tract cancer[J]. Ther Adv Med Oncol, 2021, 13:17588359211036544. doi:10.1177/17588359211036544. [百度学术]
Andersen LB, Mahler MSK, Andersen RF, et al. The clinical impact of methylated homeobox A9 ctDNA in patients with non-resectable biliary tract cancer treated with erlotinib and bevacizumab[J]. Cancers, 2022, 14(19):4598. doi:10.3390/cancers14194598. [百度学术]
Kannampuzha S, Murali R, Gopalakrishnan AV, et al. Novel biomolecules in targeted cancer therapy: a new approach towards precision medicine[J]. Med Oncol, 2023, 40(11):323. doi:10.1007/s12032-023-02168-6. [百度学术]
Tiwari P. Ramucirumab: boon or bane[J]. J Egypt Natl Canc Inst, 2016, 28(3):133-140. doi:10.1016/j.jnci.2016.03.001. [百度学术]
Lee S, Shroff RT, Makawita S, et al. Phase Ⅱ study of ramucirumab in advanced biliary tract cancer previously treated by gemcitabine-based chemotherapy[J]. Clin Cancer Res, 2022, 28(11):2229-2236. doi:10.1158/1078-0432.CCR-21-3548. [百度学术]
Valle JW, Vogel A, Denlinger CS, et al. Addition of ramucirumab or merestinib to standard first-line chemotherapy for locally advanced or metastatic biliary tract cancer: a randomised, double-blind, multicentre, phase 2 study[J]. Lancet Oncol, 2021, 22(10):1468-1482. doi:10.1016/S1470-2045(21)00409-5. [百度学术]
Reckamp KL, Redman MW, Dragnev KH, et al. Phase Ⅱ randomized study of ramucirumab and pembrolizumab versus standard of care in advanced non-small-cell lung cancer previously treated with immunotherapy-lung-MAP S1800A[J]. J Clin Oncol, 2022, 40(21):2295-2306. doi:10.1200/JCO.22.00912. [百度学术]
Arkenau HT, Martin-Liberal J, Calvo E, et al. Ramucirumab plus pembrolizumab in patients with previously treated advanced or metastatic biliary tract cancer: nonrandomized, open-label, phase I trial (JVDF)[J]. Oncologist, 2018, 23(12):1407-e136. doi:10.1634/theoncologist.2018-0044. [百度学术]
鲁丁瑜, 李娜, 李志平. 多靶点抗肿瘤新药阿帕替尼的研究进展[J]. 华西药学杂志, 2017, 32(1):104-108. doi:10.13375/j.cnki.wcjps.2017.01.033. [百度学术]
Lu DY, Li Na, Li ZP. Research progress of multi target anti-tumor drug apatinib [J]. West China Journal of Pharmaceutical Sciences, 2017, 32(1):104-108. doi:10.13375/j.cnki.wcjps.2017.01.033. [百度学术]
Al-Salama ZT, Syed YY, Scott LJ. Lenvatinib: a review in hepatocellular carcinoma[J]. Drugs, 2019, 79(6):665-674. doi:10.1007/s40265-019-01116-x. [百度学术]
Shi GM, Huang XY, Wu D, et al. Toripalimab combined with lenvatinib and GEMOX is a promising regimen as first-line treatment for advanced intrahepatic cholangiocarcinoma: a single-center, single-arm, phase 2 study[J]. Signal Transduct Target Ther, 2023, 8(1):106. doi:10.1038/s41392-023-01317-7. [百度学术]
Lin JZ, Yang X, Long JY, et al. Pembrolizumab combined with lenvatinib as non-first-line therapy in patients with refractory biliary tract carcinoma[J]. Hepatobiliary Surg Nutr, 2020, 9(4):414-424. doi:10.21037/hbsn-20-338. [百度学术]
Wang Y, Xun Z, Yang X, et al. Local-regional therapy combined with toripalimab and lenvatinib in patients with advanced biliary tract cancer[J]. Am J Cancer Res, 2023, 13(3):1026-1037. [百度学术]
Wei Z, Wang Y, Wu B, et al. Hepatic arterial infusion chemotherapy plus lenvatinib with or without programmed cell death protein-1 inhibitors for advanced cholangiocarcinoma[J]. Front Immunol, 2023, 14:1235724. doi:10.3389/fimmu.2023.1235724. [百度学术]
钟波, 朱巧珍, 刘小裕. 索拉菲尼联合肝癌介入手术治疗原发性肝癌的效果[J]. 中国实用医药, 2022, 17(6):183-185. doi:10.14163/j.cnki.11-5547/r.2022.06.067. [百度学术]
Zhong B, Zhu QZ, Liu XY. The effect of sorafenib combined with interventional surgery for primary liver cancer[J]. China Practical Medicine, 2022, 17(6):183-185. doi:10.14163/j.cnki.11-5547/r.2022.06.067. [百度学术]
Nie C, Lv H, Xing Y, et al. The efficacy and safety of apatinib treatment for patients with advanced or recurrent biliary tract cancer: a retrospective study[J]. BMC Cancer, 2021, 21(1):189. doi:10.1186/s12885-021-07907-4. [百度学术]
Wang C, Huang M, Geng Q, et al. Apatinib for patients with metastatic biliary tract carcinoma refractory to standard chemotherapy: results from an investigator-initiated, open-label, single-arm, exploratory phase Ⅱ study[J]. Ther Adv Med Oncol, 2021, 13:17588359211039047. doi:10.1177/17588359211039047. [百度学术]
Wang D, Yang X, Long J, et al. The efficacy and safety of apatinib plus camrelizumab in patients with previously treated advanced biliary tract cancer: a prospective clinical study[J]. Front Oncol, 2021, 11:646979. doi:10.3389/fonc.2021.646979. [百度学术]
Jin S, Zhao R, Zhou C, et al. Feasibility and tolerability of sintilimab plus anlotinib as the second-line therapy for patients with advanced biliary tract cancers: an open-label, single-arm, phase Ⅱ clinical trial[J]. Int J Cancer, 2023, 152(8):1648-1658. doi:10.1002/ijc.34372. [百度学术]
Zhou J, Sun Y, Zhang W, et al. Phase Ib study of anlotinib combined with TQB2450 in pretreated advanced biliary tract cancer and biomarker analysis[J]. Hepatology, 2023, 77(1):65-76. doi:10.1002/hep.32548. [百度学术]
Okano N, Furuse J, Ueno M, et al. Multicenter phase Ⅱ trial of axitinib monotherapy for gemcitabine-based chemotherapy refractory advanced biliary tract cancer (AX-BC study)[J]. Oncologist, 2021, 26(2):97-e201. doi:10.1002/onco.13547. [百度学术]
Li X, Gao L, Zhang L, et al. Third-line sunitinib treatment in a VHL-mutated metastatic intrahepatic cholangiocarcinoma: a case report and literature review[J]. Cancer Biol Ther, 2020, 21(9):785-789. doi:10.1080/15384047.2020.1769418. [百度学术]
Xu J, Bai YX, Sun HC, et al. A single-arm, multicenter, open-label phase 2 trial of surufatinib in patients with unresectable or metastatic biliary tract cancer[J]. Cancer, 2021, 127(21):3975-3984. doi:10.1002/cncr.33803. [百度学术]
Valle JW, Wasan H, Lopes A, et al. Cediranib or placebo in combination with cisplatin and gemcitabine chemotherapy for patients with advanced biliary tract cancer (ABC-03): a randomised phase 2 trial[J]. Lancet Oncol, 2015, 16(8):967-978. doi:10.1016/S1470-2045(15)00139-4. [百度学术]
Motzer RJ, Taylor MH, Evans TRJ, et al. Lenvatinib dose, efficacy, and safety in the treatment of multiple malignancies[J]. Expert Rev Anticancer Ther, 2022, 22(4):383-400. doi:10.1080/14737140.2022.2039123. [百度学术]
孟文君, 彭星辰. 癌症mRNA疫苗的研究现状、挑战及展望[J]. 实用肿瘤杂志, 2023, 38(3):218-221. doi:10.13267/j.cnki.syzlzz.2023.034. [百度学术]
Meng WJ, Peng XC. Research status, challenges, and prospects of mRNA-based cancer vaccine[J]. Journal of Practical Oncology, 2023, 38(3):218-221. doi:10.13267/j.cnki.syzlzz.2023.034. [百度学术]
Kaczmarek M, Poznańska J, Fechner F, et al. Cancer vaccine therapeutics: limitations and effectiveness-a literature review[J]. Cells, 2023, 12(17):2159. doi:10.3390/cells12172159. [百度学术]
Miyazawa M, Katsuda M, Maguchi H, et al. Phase Ⅱ clinical trial using novel peptide cocktail vaccine as a postoperative adjuvant treatment for surgically resected pancreatic cancer patients[J]. Int J Cancer, 2017, 140(4):973-982. doi:10.1002/ijc.30510. [百度学术]
Murahashi M, Tsuruta T, Yamada K, et al. Clinical trial of a cancer vaccine targeting VEGF and KIF20A in advanced biliary tract cancer[J]. Anticancer Res, 2021, 41(3):1485-1496. doi:10.21873/anticanres.14907. [百度学术]
Gupta A, Kurzrock R, Adashek JJ. Evolution of the targeted therapy landscape for cholangiocarcinoma: is cholangiocarcinoma the 'NSCLC' of GI oncology?[J]. Cancers, 2023, 15(5):1578. doi:10.3390/cancers15051578. [百度学术]