摘要
瑞戈非尼治疗肝癌不可避免的存在毒副作用,而且治疗有效率有限。细胞程序性死亡-配体1(PD-L1)单抗可有效阻断“肿瘤免疫逃逸机制”,发挥显著抗肿瘤作用。因此,本研究探讨瑞戈非尼联合PD-L1单抗对肝癌移植瘤小鼠的抗癌作用。
将Balb/C裸小鼠建立肝癌移植瘤模型后,分别给予瑞戈非尼(瑞戈非尼组)、阿替利珠单抗(PD-L1单抗组)、瑞戈非尼+阿替利珠单抗(联合组)、生理盐水(模型组)处理,连续4周,期间动态测量各组肿瘤体积。4周后,剥离各组小鼠移植瘤,分别用流式细胞术、TUNEL法、HE染色检测肿瘤组织CD
给药前4组小鼠肿瘤体积差异无统计学意义(P>0.05),给药1、2、3、4周时,各给药组小鼠肿瘤体积均明显小于模型组,且联合组的肿瘤体积明显小于两个单药组(均P<0.05),但两个单药组间肿瘤体积无明显差异(均P>0.05)。各给药组肿瘤组织中CD
肝癌是全球范围内发病率和病死率最高的恶性肿瘤之一,严重威胁着人类的生命健康,给全球带来沉重的社会压力和经济负
瑞戈非尼购自拜耳公司;阿替利珠单抗注射液购自德国Roche Diagnostics GmbH;胎牛血清和培养基购自美国Gibco公司;抗人CD
模型制作参照文
肿瘤直径测量完成后,处死小鼠,快速剥离肿瘤组织。取部分肿瘤组织置于EP管中,剪碎,加入0.1 μg/L Ⅳ型胶原酶,置于37 ℃摇床上孵育1 h,含1%胎牛血清的磷酸盐缓冲液终止反应,2 000 r/min离心10 min(离心半径8 cm),去除上清液,加入2 mL红细胞裂解液,冰上静置 10 min,2 000 r/min离心10 min(离心半径8 cm),磷酸盐缓冲液清洗2次,将细胞制成悬液分装成两管,一管加入anti-CD
取部分肿瘤组织,制成4 μm厚的石蜡切片,二甲苯透明2次,梯度乙醇脱水,滴加过氧化氢阻断剂孵育10 min,组织上滴加Proteinase K工作液20 μL,湿盒中避光孵育30 min,磷酸盐缓冲液清洗2次。TUNEL反应液37 ℃孵育 60 min,磷酸盐缓冲液清洗2次,滴加辣根过氧化物酶标记的抗体,37 ℃湿盒中孵育30 min,磷酸盐缓冲液冲洗3次,苏木精复染,中性树胶封片。显微镜下观察,呈棕黄色着色的颗粒即为阳性细胞。细胞凋亡率=阳性细胞数/总细胞数×100%。
TRIzol试剂提取肿瘤组织中总RNA,将RNA逆转录成cDNA,以cDNA为模板进行扩增,反应体系设置为:8 μL cDNA,10 μL SYBRP Green mix、上下游引物各1 μL。反应条件:95 ℃ 预变性10 min,95 ℃变性10 s,60 ℃退火1 min,进行40个循环。
基因 | 引物序列 |
---|---|
CD31 | F:5′-ACG CTG GTG CTC TAT GCA AG-3′ |
R:5′-TCA GTT GCT GCC CAT TCA TCA-3′ | |
VEGF | F:5′-CTG CCG TCC GAT TGA GAC C-3′ |
R:5′-CCC CTC CTT GTA CCA CTG TC-3′ | |
Ki-67 | F:5′-ATC ATT GAC CGC TCC TTT AGG T-3′ |
R:5′-GGG CGT GGG CGA TAC TAA A-3′ | |
Bax | F:5′-GCT CGC CTT GAT GGT TCC T-3′ |
F:5′-AAT TCG CCG GAG ACA CTC G-3′ | |
Bcl-2 | F:5′-GCT ACC GTC GTG ACT TCG C-3′ |
F:5′-CCC CAC CGA ACT CAA AGA AGG-3′ | |
GAPDH | F:5′-ACA ACT TTG GTA TCG TGG AAG G-3′ |
R:5′-GCC ATC ACG CCA CAG TTT C-3′ |
给药前4组小鼠肿瘤体积比较,差异无统计学意义(P>0.05)。给药1、2、3、4周时,瑞戈非尼组、PD-L1单抗组和联合组小鼠肿瘤体积均明显小于模型组,且联合组小鼠肿瘤体积明显小于瑞戈非尼组和PD-L1单抗组(均P<0.05),瑞戈非尼组和PD-L1单抗组小鼠肿瘤体积差异无统计学意义(均P>0.05)(
组别 | 给药前 | 给药1周 | 给药2周 | 给药3周 | 给药4周 |
---|---|---|---|---|---|
模型组 | 0.53±0.04 | 0.44±0.06 | 0.73±0.08 | 1.02±0.11 | 1.31±0.14 |
瑞戈非尼组 | 0.57±0.09 |
0.35±0.0 |
0.62±0.0 |
0.91±0.0 |
1.06±0.1 |
PD-L1单抗组 | 0.55±0.08 |
0.36±0.0 |
0.60±0.0 |
0.89±0.0 |
1.04±0.1 |
联合组 | 0.56±0.05 |
0.29±0.0 |
0.56±0.0 |
0.74±0.0 |
0.88±0.0 |
注: 1)与模型组比较,P<0.05;2)与联合组比较,P<0.05
Note: 1) P<0.05 vs. model group; 2) P<0.05 vs. combination group
与模型组比较,瑞戈非尼组、PD-L1单抗组和联合组CD
组别 | CD | CD |
---|---|---|
模型组 | 5.60±1.22 | 4.95±1.05 |
瑞戈非尼组 |
20.48±5.7 |
18.37±6.1 |
PD-L1单抗组 |
28.89±5.3 |
25.38±7.6 |
联合组 |
58.76±11.4 |
44.75±12.6 |
注: 1)与模型组比较,P<0.05;2)与瑞戈非尼组比较,P<0.05;3)与联合组比较,P<0.05
Note: 1) P<0.05 vs. model group; 2) P<0.05 vs. regorafenib group; 3) P<0.05 vs. combination group
模型组几乎没有呈棕黄色阳染细胞,瑞戈非尼组、PD-L1单抗组和联合组肿瘤组织中可见明显呈棕黄色阳染的细胞(

图1 TUNEL染色检测肿瘤细胞凋亡情况(×400)
Figure 1 TUNEL staining for detection of tumor cell apoptosis (×400)
组别 | 细胞凋亡率 |
---|---|
模型组 | 14.59±2.40 |
瑞戈非尼组 |
31.48±7.3 |
PD-L1单抗组 |
42.96±8.7 |
联合组 |
68.33±9.2 |
注: 1)与模型组比较,P<0.05;2)与瑞戈非尼组比较,P<0.05;3)与联合组比较,P<0.05
Note: 1) P<0.05 vs. model group; 2) P<0.05 vs. regorafenib group; 3) P<0.05 vs. combination group
模型组肿瘤细胞核大、深染、排列密集;瑞戈非尼组、PD-L1单抗组和联合组肿瘤细胞出现不同程度的核皱缩、细胞数量减少,片状坏死等改变,联合组此种改变最明显(

图2 肿瘤组织HE染色(×400)
Figure 2 HE staining of tumor tissues (×400)
与模型组比较,瑞戈非尼组、PD-L1单抗组和联合组CD31、VEGF、Ki-67和Bcl-2 mRNA表达水平降低,Bax mRNA表达水平升高(P<0.05);与瑞戈非尼组和PD-L1单抗组比较,联合组CD31、VEGF、Ki-67和Bcl-2 mRNA表达水平降低,Bax mRNA表达水平升高(P<0.05);瑞戈非尼组和PD-L1单抗组CD31、VEGF、Ki-67、Bcl-2和Bax mRNA表达水平比较,差异无统计学意义(均P>0.05)(
组别 | CD31 | VEGF | Ki-67 | Bcl-2 | Bax |
---|---|---|---|---|---|
模型组 | 1.00±0.03 | 1.00±0.05 | 1.00±0.04 | 1.00±0.05 | 1.00±0.04 |
瑞戈非尼组 |
0.64±0.0 |
0.63±0.0 |
0.52±0.0 |
0.68±0.0 |
0.59±0.0 |
PD-L1单抗组 |
0.61±0.0 |
0.57±0.0 |
0.55±0.0 |
0.73±0.0 |
0.55±0.0 |
联合组 |
0.37±0.0 |
0.44±0.0 |
0.46±0.0 |
0.52±0.0 |
0.41±0.0 |
注: 1)与模型组比较,P<0.05;2)与联合组比较,P<0.05
Note: 1) P<0.05 vs. model group; 2) P<0.05 vs. combination group
与模型组比较,瑞戈非尼组、PD-L1单抗组和联合组CD31、VEGF、Ki-67和Bcl-2蛋白表达降低,Bax蛋白表达升高(P<0.05);与瑞戈非尼组和PD-L1单抗组比较,联合组CD31、VEGF、Ki-67和Bcl-2蛋白表达降低,Bax蛋白表达升高(P<0.05);瑞戈非尼组和PD-L1单抗组CD31、VEGF、Ki-67、Bcl-2和Bax蛋白表达比较,差异无统计学意义(均P>0.05)(

图3 Western blot检测肿瘤组织中CD31、VEGF、Ki-67、Bcl-2和Bax蛋白表达
Figure 3 Western blot analysis for protein expressions of CD31, VEGF, Ki-67, Bcl-2 and Bax in the tumor tissues
组别 | CD31 | VEGF | Ki-67 | Bcl-2 | Bax |
---|---|---|---|---|---|
模型组 | 0.81±0.08 | 0.57±0.06 | 0.85±0.09 | 0.91±0.09 | 0.35±0.06 |
瑞戈非尼组 |
0.34±0.0 |
0.22±0.0 |
0.56±0.0 |
0.48±0.0 |
0.78±0.0 |
PD-L1单抗组 |
0.31±0.0 |
0.25±0.0 |
0.57±0.0 |
0.51±0.0 |
0.79±0.0 |
联合组 |
0.12±0.0 |
0.14±0.0 |
0.09±0.0 |
0.37±0.0 |
0.96±0.0 |
注: 1)与模型组比较,P<0.05;2)与联合组比较,P<0.05
Note: 1) P<0.05 vs. model group; 2) P<0.05 vs. combination group
目前,临床上对肝癌的治疗多是手术切除,但是部分患者就诊时已处于中晚期,错失了根治性手术的机会,且早期切除患者易复发,5年术后复发率高达70
本研究通过测量小鼠肿瘤体积发现,瑞戈非尼组、PD-L1单抗组和联合组小鼠肿瘤体积在给药1、2、3、4周时与模型组比较均减小,且联合组肿瘤体积减小最多。由此可见瑞戈非尼联合PD-L1单抗可发挥抗肝癌作用,且治疗效果优于单一用药。从肿瘤组织病理学染色结果:模型组肿瘤细胞核大、深染、排列密集;瑞戈非尼组、PD-L1单抗组和联合组肿瘤细胞出现不同程度的核皱缩、细胞数量减少、片状坏死等改变,联合组此种改变最明显。TUENL染色结果显示,瑞戈非尼组、PD-L1单抗组和联合组小鼠肿瘤细胞凋亡率较模型组明显升高,且联合组细胞凋亡率最高,说明瑞戈非尼联合PD-L1单抗可诱导肿瘤细胞凋亡。综合以上结果可知,瑞戈非尼联合PD-L1单抗可有效发挥抗肝癌作用,诱导肿瘤细胞凋亡和坏死,且联合用药效果优于单一用药。
前人的研
血管生成为肿瘤细胞的快速增殖提供足够的氧气和养分,是肿瘤细胞发生恶性增殖、转移的基础,而VEGF和CD31是血管生成的重要标志
综上所述,瑞戈非尼联合PD-L1单抗显著发挥抗肝癌作用,其可能是通过调节肿瘤微环境中的免疫细胞活化,抑制血管生成、调节凋亡相关蛋白表达发挥作用,为临床治疗中晚期肝癌患者提供理论依据。但是,本研究存在不足之处,首先本研究猜测瑞戈非尼联合PD-L1单抗发挥抗肝癌作用的途径之一是抑制血管生成,但是对血管的研究甚少,下一步将针对血管生成做进一步的研究。其次,本研究仅停留在动物水平,下一步将从细胞水平探讨瑞戈非尼联合PD-L1对肝癌细胞增殖、迁移和侵袭的影响。
作者贡献声明
倪明立提供实验方案;潘威负责实验操作;徐倩负责数据统计分析和文章撰写。
利益冲突
所有作者均声明不存在利益冲突。
参考文献
Qi J, Li M, Wang L, et al. National and subnational trends in cancer burden in China, 2005-20: an analysis of national mortality surveillance data[J]. Lancet Public Health, 2023, 8(12):e943-e955. doi:10.1016/S2468-2667(23)00211-6. [百度学术]
Rumgay H, Arnold M, Ferlay J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040[J]. J Hepatol, 2022, 77(6):1598-1606. doi:10.1016/j.jhep.2022.08.021. [百度学术]
龙霞, 曾晓欢, 干小红. 基于美国FDA不良事件报告系统数据库的瑞戈非尼肝胆系统损伤风险分析[J]. 药物不良反应杂志, 2020, 22(4):227-232. doi:10.3760/cma.j.cn114015-20190615-00491. [百度学术]
Long X, Zeng XH, Gan XH. Risk analysis of regorafenib related hepatobiliary system injury based on the US Food and Drug Administration Adverse Event Reporting System[J]. Adverse Drug Reactions Journal, 2020, 22(4):227-232. doi:10.3760/cma.j.cn114015-20190615-00491. [百度学术]
裴育莹, 高宇, 娄彦妮. 瑞戈非尼致不良反应的文献回顾性分析[J]. 中国医院药学杂志, 2019, 39(6):616-619. doi:10.13286/j.cnki.chinhosppharmacyj.2019.06.16. [百度学术]
Pei YY, Gao Y, Lou YN. Literature review analysis of adverse drug reactions induced by regorafenib[J]. Chinese Journal of Hospital Pharmacy, 2019, 39(6):616-619. doi:10.13286/j.cnki.chinhosppharmacyj.2019.06.16. [百度学术]
蒋经柱, 李浩权, 王在国, 等. 瑞戈非尼联合卡瑞利珠单抗治疗难治性肝复发癌获得完全缓解病例的临床经验[J]. 中国普外基础与临床杂志, 2022, 29(9):1149-1153. doi:10.7507/1007-9424.202207040. [百度学术]
Jiang JZ, Li HQ, Wang ZG, et al. Clinical experience of regorafenib combined with camrelizumab in the treatment of refractory recurrent liver cancer with complete remission[J]. Chinese Journal of Bases and Clinics in General Surgery, 2022, 29(9):1149-1153. doi:10.7507/1007-9424.202207040. [百度学术]
杨媛, 郑涛, 左强, 等. 瑞戈非尼与贝伐珠单抗联合化疗对转移性结直肠肿瘤的临床效果[J]. 西南国防医药, 2020, 30(6):565-568. doi:10.3969/j.issn.1004-0188.2020.06.025. [百度学术]
Yang Y, Zheng T, Zuo Q, et al. Clinical efficacy of regorafenib plus bevacizumab combined with chemotherapy in treatment of metastatic colorectal tumors[J]. Medical Journal of National Defending Forces in Southwest China, 2020, 30(6):565-568. doi:10.3969/j.issn.1004-0188.2020.06.025. [百度学术]
肖国辉, 陈浪, 余武汉, 等. PD-1/PD-L1与肿瘤相关巨噬细胞在肿瘤发生中的相互作用研究进展[J]. 中国普通外科杂志, 2023, 32(4):615-621. doi:10.7659/j.issn.1005-6947.2023.04.016. [百度学术]
Xiao GH, Chen L, Yu WH, et al. Research progress on the interaction between PD-1/PD-L1 and tumor-associated macrophages in carcinogenesis[J]. China Journal of General Surgery, 2023, 32(4):615-621. doi:10.7659/j.issn.1005-6947.2023.04.016. [百度学术]
杜晓宇, 范瑞芳, 许淑梅, 等. 免疫检查点抑制剂在胃肠道恶性肿瘤新辅助治疗中的应用研究进展[J]. 中国普通外科杂志, 2023, 32(10):1588-1598. doi:10.7659/j.issn.1005-6947.2023.10.018. [百度学术]
Du XY, Fan RF, Xu SM, et al. Advances in application of immune checkpoint inhibitors in neoadjuvant therapy for gastrointestinal malignancies[J]. China Journal of General Surgery, 2023, 32(10):1588-1598. doi:10.7659/j.issn.1005-6947.2023.10.018. [百度学术]
Peng L, Pan B, Zhang X, et al. Lipopolysaccharide facilitates immune escape of hepatocellular carcinoma cells via m6A modification of lncRNAMIR155HG to upregulate PD-L1 expression[J]. Cell Biol Toxicol, 2022, 38(6):1159-1173. doi:10.1007/s10565-022-09718-0. [百度学术]
刘凤英, 张文东, 刘方. 二线单药化疗联合PD-1/PD-L1抑制剂对晚期非小细胞肺癌的临床疗效[J]. 临床和实验医学杂志, 2021, 20(2):169-172. doi:10.3969/j.issn.1671-4695.2021.02.016. [百度学术]
Liu FY, Zhang WD, Liu F. Clinical efficacy of second-line single drug chemotherapy combined with PD-1/PD-L1 inhibitors in the treatment of advanced non-small cell lung cancer[J]. Journal of Clinical and Experimental Medicine, 2021, 20(2):169-172. doi:10.3969/j.issn.1671-4695.2021.02.016. [百度学术]
雷艺, 程旸, 林鑫盛, 等. 仑伐替尼联合氟伐他汀对小鼠肝癌移植瘤的抑制作用及其机制[J]. 中国药理学通报, 2022, 38(10):1511-1516. doi:10.12360/CPB202201067. [百度学术]
Lei Y, Cheng Y, Lin XS, et al. The inhibitory effect of lenvatinib plus fluvastatin on liver transplantation tumor in mice and corresponding mechanism[J]. Chinese Pharmacological Bulletin, 2022, 38(10):1511-1516. doi:10.12360/CPB202201067. [百度学术]
陈建南, 吴进盛, 于莉, 等. 瑞戈非尼通过抑制Wnt信号通路调控肝癌进展的分子机制[J]. 中国老年学杂志, 2022, 42(7):1722-1726. doi:10.3969/j.issn.1005-9202.2022.07.054. [百度学术]
Chen JN, Wu JS, Yu L, et al. Molecular mechanism of regofibril regulating the progress of hepatocellular carcinoma by inhibiting Wnt signaling pathway[J]. Chinese Journal of Gerontology, 2022, 42(7):1722-1726. doi:10.3969/j.issn.1005-9202.2022.07.054. [百度学术]
程建猛. PD-L1抑制剂对非小细胞肺癌小鼠血清IL-4、IFN-γ及生存率的影响[J]. 现代肿瘤医学, 2020, 28(15):2574-2578. doi:10.3969/j.issn.1672-4992.2020.15.006. [百度学术]
Cheng JM. Effects of PD-L1 inhibitors on serum IL-4, IFN-γ and survival of mice with non-small cell lung cancer[J]. Journal of Modern Oncology, 2020, 28(15):2574-2578. doi:10.3969/j.issn.1672-4992.2020.15.006. [百度学术]
Zeng ZM, Mo N, Zeng J, et al. Advances in postoperative adjuvant therapy for primary liver cancer[J]. World J Gastrointest Oncol, 2022, 14(9):1604-1621. doi:10.4251/wjgo.v14.i9.1604. [百度学术]
Yan H, Wu W, Hu Y, et al. Regorafenib inhibits EphA2 phosphorylation and leads to liver damage via the ERK/MDM2/p53 axis[J]. Nat Commun, 2023, 14(1):2756. doi:10.1038/s41467-023-38430-8. [百度学术]
Sharma D, Rasool F, Bharti M, et al. Regorafenib and ruthenium complex combination inhibit cancer cell growth by targeting PI3K/AKT/ERK signalling in colorectal cancer cells[J]. Int J Mol Sci, 2022, 24(1):686. doi:10.3390/ijms24010686. [百度学术]
Bajbouj K, Qaisar R, Alshura MA, et al. Synergistic anti-angiogenic effect of combined VEGFR kinase inhibitors, lenvatinib, and regorafenib: a therapeutic potential for breast cancer[J]. Int J Mol Sci, 2022, 23(8):4408. doi:10.3390/ijms23084408. [百度学术]
Zhao J, Guo Y, Feng T, et al. Efficacy and safety of regorafenib in combination with immune checkpoint inhibitor therapy as second-line and third-line regimen for patients with advanced hepatocellular carcinoma: a retrospective study[J]. J Gastrointest Oncol, 2023, 14(6):2549-2558. doi:10.21037/jgo-23-590. [百度学术]
Yamaguchi H, Hsu JM, Yang WH, et al. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics[J]. Nat Rev Clin Oncol, 2022, 19(5):287-305. doi:10.1038/s41571-022-00601-9. [百度学术]
Wu M, Huang Q, Xie Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation[J]. J Hematol Oncol, 2022, 15(1):24. doi:10.1186/s13045-022-01242-2. [百度学术]
刘树雨, 王丽霞, 姚秀玲, 等. 阿替利珠单抗联合化疗治疗卵巢癌的效果及对肿瘤标志物、短期预后的影响[J]. 中国妇产科临床杂志, 2024, 25(1):28-30. doi:10.13390/j.issn.1672-1861.2024.01.008. [百度学术]
Liu SY, Wang LX, Yao XL, et al. Effect of atezolizumab combined with chemotherapy on ovarian cancer and its influence on tumor markers and short-term prognosis[J]. Chinese Journal of Clinical Obstetrics and Gynecology, 2024, 25(1):28-30. doi:10.13390/j.issn.1672-1861.2024.01.008. [百度学术]
祝保艳, 李婧婧, 李丹丹, 等. 卡博替尼联合PD-L1单抗对黑色素瘤小鼠移植瘤的抑制作用机制[J]. 中山大学学报:医学科学版, 2019, 40(2):172-178. doi:10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2019.0025. [百度学术]
Zhu BY, Li JJ, Li DD, et al. Cabozantinib combined with anti-PD-L1 antibody produced antitumor effect on mice melanoma xenograft and its mechanism[J]. Journal of Sun Yat-sen University:Medical Sciences, 2019, 40(2):172-178. doi:10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2019.0025. [百度学术]
彭雨, 李海涛, 杨文丽, 等. PD-1抑制剂联合仑伐替尼治疗老年中晚期原发性肝癌患者临床疗效研究[J]. 实用肝脏病杂志, 2023, 26(1):112-115. doi:10.3969/j.issn.1672-5069.2023.01.029. [百度学术]
Peng Y, Li HT, Yang WL, et al. Clinical efficacy of PD-1 inhibitor and lenvatinib in the treatment of elderly patients with advanced primary liver cancer[J]. Journal of Practical Hepatology, 2023, 26(1):112-115. doi:10.3969/j.issn.1672-5069.2023.01.029. [百度学术]
Mo DC, Huang JF, Luo PH, et al. PD-1/PD-L1 inhibitor plus chemotherapy versus standard of care in the first-line treatment for recurrent or metastatic head and neck squamous cell carcinoma[J]. Eur Arch Otorhinolaryngol, 2023, 280(1):1-9. doi:10.1007/s00405-022-07571-9. [百度学术]
Li X, Li Y, Wang Y, et al. Sinensetin suppresses angiogenesis in liver cancer by targeting the VEGF/VEGFR2/AKT signaling pathway[J]. Exp Ther Med, 2022, 23(5):360. doi:10.3892/etm.2022.11287. [百度学术]
Wu S, Su Y, Wang L, et al. The effects of photobiomodulation therapy on inflammatory mediators, immune infiltration, and angiogenesis in a mouse model of rosacea[J]. Ann Transl Med, 2022, 10(15):831. doi:10.21037/atm-22-3204. [百度学术]
Segura IG, Secchi DG, Galíndez MF, et al. Connexin 43, Bcl-2, Bax, Ki67, and E-cadherin patterns in oral squamous cell carcinoma and its relationship with GJA1 rs12197797 C/G[J]. Med Oral Patol Oral Cir Bucal, 2022, 27(4):e366-e374. doi:10.4317/medoral.25298. [百度学术]
Chen CH, Hsu FT, Chen WL, et al. Induction of apoptosis, inhibition of MCL-1, and VEGF-A expression are associated with the anti-cancer efficacy of magnolol combined with regorafenib in hepatocellular carcinoma[J]. Cancers (Basel), 2021, 13(9):2066. doi:10.3390/cancers13092066. [百度学术]
Wang J, Zhang M, Huang X, et al. Multiproperty polyethylenimine-caged platinum nanoclusters promote apoptosis of osteosarcoma cells via regulating the BAX-bcl-2/caspase-3/PARP axis[J]. Mol Pharm, 2023, 20(11):5607-5615. doi:10.1021/acs.molpharmaceut.3c00501. [百度学术]
Kuo CL, Chou HY, Lien HW, et al. A Fc-VEGF chimeric fusion enhances PD-L1 immunotherapy via inducing immune reprogramming and infiltration in the immunosuppressive tumor microenvironment[J]. Cancer Immunol Immunother, 2023, 72(2):351-369. doi:10.1007/s00262-022-03255-9. [百度学术]
Wen J, Xue L, Wei Y, et al. YTHDF2 is a therapeutic target for HCC by suppressing immune evasion and angiogenesis through ETV5/PD-L1/VEGFA axis[J]. Adv Sci, 2024, 11(13):e2307242. doi:10.1002/advs.202307242. [百度学术]