摘要
目前,肝细胞癌(HCC)的治疗仍面临复发和转移的严峻挑战,而肿瘤免疫逃逸是导致这些问题的关键机制之一。信号转导与转录激活因子3(STAT3)作为重要的转录因子,在多种恶性肿瘤中呈现过度激活状态,不仅参与肿瘤的发生与进展,还与肿瘤免疫逃逸密切相关。程序性死亡配体1(PD-L1)是关键的免疫检查点,其表达上调能够帮助肿瘤细胞逃避免疫监视,从而抑制抗肿瘤免疫。研究显示,STAT3可能通过与蛋白激酶DNA激活催化多肽(PRKDC)的相互作用激活骨髓细胞瘤病毒癌基因(MYC)信号通路,进而促进PD-L1的表达并诱导免疫逃逸。然而,STAT3/PRKDC/MYC轴在HCC中的具体作用机制尚不明确。本研究旨在揭示STAT3通过PRKDC/MYC信号通路调控PD-L1表达并可能诱导HCC免疫逃逸的分子机制,以期为HCC免疫治疗提供潜在靶点。
用qRT-PCR和Western blot检测人正常肝细胞(HL-7702)与人HCC细胞(HuH-7、HepG2)中STAT3的表达。构建敲低STAT3(si-STAT3)和过表达PRKDC(oe-PRKDC)质粒,以及各自的阴性对照(si-NC、oe-NC)质粒,按实验设计分别转染至HCC细胞(HuH-7)中,以无处理的HuH-7细胞为空白对照。采用Western blot分析各组细胞STAT3、PRKDC、PD-L1和MYC通路相关蛋白的表达。采用CCK-8、Transwell、划痕试验和流式细胞术评估HCC细胞的增殖、侵袭、迁移和凋亡。将HuH-7细胞与人外周血单个核细胞(hPBMC)共培养后,采用ELISA法检测免疫调节因子干扰素γ(IFN-γ)的含量。采用免疫共沉淀和免疫荧光共定位验证STAT3与PRKDC蛋白之间的相互作用。
qRT-PCR和Western blot结果显示,HCC细胞中STAT3的mRNA和蛋白表达水平均明显升高(均P<0.05)。功能实验结果显示,si-STAT3组HCC细胞的增殖、迁移和侵袭能力明显减弱,细胞凋亡明显升高;PD-L1和MYC通路相关蛋白的表达水平明显下调;与hPBMC共培养后IFN-γ的分泌水平明显升高(均P<0.05)。与oe-PRKDC质粒共培养后,STAT3敲低对HCC细胞的以上影响均被明显逆转(均P<0.05)。Scansite 4.0数据库分析结果显示,STAT3与PRKDC存在结合位点,免疫共沉淀与免疫荧光共定位实验表明STAT3与PRKDC蛋白的相互作用。
肝细胞癌(hepatocellular carcinoma,HCC)作为原发性肝癌的主要类型,已成为全球病死率和发病率较高的癌症之
肿瘤微环境(tumor microenvironment,TME)在肿瘤的进展中发挥着重要作用,TME内的免疫细胞倾向于在肿瘤发生的早期阶段靶向杀死癌细胞,但癌细胞可以通过各种机制逃避免疫监
信号转导和转录激活因子3(signal transducer and activator of transcription 3,STAT3)已被证实对大多数癌症具有促癌作用,可以促进细胞增殖、分化和血管生
人正常肝细胞HL-7702(CL-0111)、人HCC细胞HuH-7(CL-0120)和HepG2(CL-0103)均购于武汉普诺赛生命科技有限公司,人外周血单个核细胞(hPBMC)SNP-H287购于武汉尚恩生物技术有限公司,细胞分别通过含10% FBS(Gibco,美国)和1%双抗(Sigma-Aldrich,美国)的RPMI-1640和DMEM细胞培养液(Sigma-Aldrich,美国)进行培养。并将其置于含5% CO2、37 ℃细胞恒温培养箱内孵育,当细胞生长至培养皿的90%时进行传代培养。
取出培养好的HuH-7细胞,按照1×1
收集各组细胞,采用TRIzol试剂(Invitrogen)提取总RNA。按照One Step Prime Script miRNA cDNA Synthesis Kit(Takara,日本)试剂盒操作步骤将RNA反转录合成单链互补DNA(cDNA),采用SYBR Green PCR Master Mix(Life Technologies,美国)试剂盒进行qRT-PCR扩增,并检测mRNA水平。以GAPDH作为基因内参,采用
基因 | 序列(5'→3') |
---|---|
STAT3 | |
正向 | 5'-CTT GGG TGG AGA AGG ACA-3' |
反向 | 5'-ATC GGC AGG TCA ATG GTA-3' |
PRKDC | |
正向 | 5'-CCC CTC ATC AGT GGT TTC-3' |
反向 | 5'-TTC CCA GTT ATT CTT GGT CTCA-3' |
GAPDH | |
正向 | 5'-TGA CCA CAG TCC ATG CCA TCA C-3' |
反向 | 5'-CGC CTG CTT CAC CAC CTT CTT-3' |
收集各组细胞提取总蛋白,采用10% SDS-PAGE凝胶进行分离后,通过湿转到聚偏氟乙烯(PVDF)膜上(Millipore,美国)。置于常温下,加入5%脱脂牛奶放于摇床上2 h进行封闭膜,清洗后加入一抗,将其置于4 ℃冰箱中孵育过夜,于第2天取出加入HRP conjugated二抗(1∶2 000,cat.no.ab205718,Abcam,英国),置于常温1 h。使用ECL化学发光液显影(BD Biosciences),化学发光仪进行曝光和观察,使用Image J分析蛋白条带。以anti-GAPDH抗体(1∶1 000,cat.no.ab181602,Abcam,英国)为对照。一抗包括:anti-STAT3(1∶1 000,ab68153,Abcam,英国),anti-p-STAT3(1∶20 000,ab76315,Abcam,英国),anti-PRKDC(1∶1 000,ab32566,Abcam,英国),anti-PD-L1(1∶1 000,ab213524,Abcam,英国),anti-c-MYC(1∶1 000,ab32072,Abcam,英国),anti-CCT2(1∶10 000,ab92746,Abcam,英国),anti-CBX3(1∶1 000,ab213167,Abcam,英国)。
将hPBMC与植物血凝素(PHA)(MERCK,美国)共孵育作为PHA组,未与PHA共孵育的hPBMC作为空白对照组。将si-NC和si-STAT3以及oe-PRKDC转染至HuH-7细胞后,与hPBMC共培养,随后与PHA共孵育,分别记作hPBMC+si-NC组,hPBMC+si-STAT3组和hPBMC+si-STAT3+oe-PRKDC组,提取细胞上清液采用人IFN-γ ELISA试剂盒(ml077386,上海酶联生物,中国)检测IFN-γ的含量,检测方法严格按照试剂盒说明书执行。
应用Scansite 4.0数据库(https://scansite4.mit.edu/#scanProtein)预测STAT3与PRKDC的蛋白相互作用。
收获细胞使用IP裂解缓冲液裂解,离心提取上清液。获取蛋白后分别采用含Protein A/G磁珠(Santa Cruz Biotechnology)与第一抗体anti-STAT3和anti-PRKDC在4 ℃下置于摇床上缓慢振荡孵育60 min,随后加入清洗液冲洗3次。离心管置于磁珠悬架上进行洗脱,收集洗脱液,随后采用Western blot 进行检测 ,以验证STAT3和PRKDC的相互作用。
收集细胞并将其转移到24孔板(2×1
采用CCK-8分析试剂盒(北京碧云天生物技术公司)进行细胞增殖水平检测,按照试剂盒说明进行实验。收集各组处理后的细胞,迅速按3×1
取各组对数生长期细胞,侵袭实验在Transwell小室(Corning,美国)中进行,各组细胞采用无血清DMEM培养基调整浓度为1×1
收集各组处理后细胞,以2.5×1
收集各组处理后细胞,采用胰蛋白酶消化的各组细胞。调整细胞浓度为1×1
qRT-PCR和Western blot检测结果显示,与人正常肝细胞HL-7702比较,人HCC细胞中STAT3 mRNA明显上调,STAT3明显活化(p-STAT3/STAT3)(均P<0.05)(

图1 STAT3表达检测 A:qRT-PCR;B:Western blot
Figure 1 STAT3 expression determination A: qRT-PCR; B: Western blot
将si-NC和si-STAT3分别转染至HuH-7细胞后,与空白对照组HuH-7细胞比较,si-NC组HuH-7细胞STAT3 mRNA与蛋白表达差异均无统计学意义(均P>0.05),而si-STAT3组HuH-7细胞STAT3 mRNA与蛋白表达明显降低(均P>0.05)(

图2 转染效率检测 A:qRT-PCR检测STAT3 mRNA表达;B:Western blot检测STAT3蛋白的表达
Figure 2 Transfection efficiency detection A: Detection of STAT3 mRNA expression by qRT-PCR; B: Detection of STAT3 protein expression by Western blot
与空白对照组比较,si-NC组细胞增殖能力、细胞侵袭和迁移能力、凋亡率差异均无统计学意义(均P>0.05),而si-STAT3组细胞增殖能力明显减弱、细胞的侵袭和迁移能力明显降低、凋亡明显升高(均P<0.05)(

图3 STAT3对HCC细胞增殖、侵袭、迁移和凋亡的影响 A:CCK-8分析;B:划痕愈合分析;C:Transwell评估侵袭能力;D:流式细胞术检测细胞凋亡
Figure 3 Effect of STAT3 on HCC cell proliferation, invasion, migration, and apoptosis A: CCK-8 analysis; B: Wound healing assay; C: Transwell assay to evaluate invasion ability; D: Flow cytometry analysis of cell apoptosis
Western blot检测结果显示,与空白对照组比较,si-NC组的各蛋白表达水平差异均无统计学意义(均P>0.05),而si-STAT3组PD-L1以及c-MYC、CCT2和CBX3的蛋白表达水平均明显降低(均P<0.05)(

图4 PD-L1和MYC通路相关蛋白表达检测
Figure 4 Detection of expressions of PD-L1 and MYC pathway-related proteins
与未处理的hPBMC细胞比较,PHA组hPBMC细胞 的IFN-γ分泌明显升高(P<0.05),hPBMC+si-NC组hPBMC细胞的IFN-γ分泌水平差异无统计学意义(P>0.05),hPBMC+si-STAT3组hPBMC细胞的IFN-γ分泌水平明显升高(P<0.05)(

图5 各组IFN-γ分泌水平比较
Figure 5 Comparison of IFN-γ secretion levels among different groups
Scansite 4.0数据库分析发现,STAT3与PRKDC蛋白之间存在结合位点(

图6 STAT3与PRKDC蛋白的相互作用 A:结合位点图;B:免疫共沉淀实验;C:免疫荧光共定位(比例尺=20 µm)
Figure 6 Interaction between STAT3 and PRKDC proteins A: Binding site map; B: Co-immunoprecipitation assay; C: Immunofluorescence co-localization (scale bar=20 µm)
为了进一步明确STAT3与PRKDC在HCC的进展中的作用机制,本研究将oe-PRKDC共转染至HuH-7细胞中,qRT-PCR与Western blot检测结果显示,与空白对照组比较,oe-NC组PRKDC mRNA与蛋白表达差异均无统计学意义(均P>0.05),而oe-PRKDC组PRKDC mRNA与蛋白表达明显升高(均P<0.05)(

图7 测转染效率检测 A:qRT-PCR检测PRKDC mRNA表达;B:Western blot检测PRKDC蛋白的表达
Figure 7 Transfection efficiency detection A: Detection of PRKDC mRNA expression by qRT-PCR; B: Detection of PRKDC protein expression by Western blot
检测结果显示,oe-PRKDC共转染后,STAT3敲低对细胞增殖、侵袭与迁移能力的抑制以及对细胞凋亡的促进作用被明显逆转(均P<0.05)(

图8 STAT3与PRKDC相互作用对HCC细胞增殖、迁移、侵袭和凋亡的影响 A:CCK-8分析;B:划痕愈合分析;C:Transwell评估侵袭能力;D:流式细胞术检测细胞凋亡
Figure 8 Effect of STAT3 and PRKDC interaction on HCC cell proliferation, invasion, migration, and apoptosis A: CCK-8 analysis; B: Wound healing assay; C: Transwell assay to evaluate invasion ability; D: Flow cytometry analysis of cell apoptosis
检测结果显示,oe-PRKDC共转染后,STAT3敲低所致的PD-L1、c-MYC、CCT2和CBX3的蛋白表达水平下调被明显逆转(均P<0.05)(

图9 STAT3与PRKDC相互作用对HCC细胞PD-L1和MYC通路相关蛋白表达的影响
Figure 9 Effect of STAT3 and PRKDC interaction on PD-L1 and MYC pathway-related protein expression in HCC cells
检测结果显示,oe-PRKDC共转染后,STAT3敲低所致的IFN-γ分泌增加被明显逆转(P<0.05)(

图10 各组IFN-γ分泌水平比较
Figure 10 Comparison of IFN-γ secretion levels among different groups
HCC是一种发病率和病死率都位居高位的恶性肿瘤之一,尤其是在中国,HCC的高发病率和致死率严重威胁着中国人民的生命安全,再加上昂贵的治疗费用带来了严重的经济负
STAT3是激活因子蛋白家族的成员之一,具有介导细胞信号传递,参与各种生物学过程,包括细胞增殖、分化、凋亡和血管形
MYC在肿瘤的发展和免疫调节中具有重要作用,MYC的过表达促进了癌细胞的增殖和分化,促进了癌症的发生与发展。此外,MYC的激活会对抗原传递、T细胞识别以及T细胞和NK细胞介导的细胞免疫应答产生影响,从而促进了癌细胞免疫逃
综上所述,本研究结果证实,STAT3通过与PRKDC相互作用促进HCC细胞增殖、迁移和侵袭以及免疫逃逸,并与MYC通路有关。STAT3与PRKDC蛋白互作可能是HCC免疫治疗的有效潜在靶点,然而本研究只在细胞层面证实STAT3与PRKDC在HCC细胞进展中的作用,后续研究还应进一步通过体内模型以及临床加以验证,其次还需进一步明确STAT3、PRKDC与MYC通路在HCC中的具体作用机制。
作者贡献声明
田芳铭主要参与实验研究思路构思、实验方法设计、细胞实验、数据整理、实验数据分析及论文撰写等;施智甜主要参与论文研究思路构思、实验方法设计、实验实施、论文审核及修订等;刘鑫、唐浩程、张恺、郭臣主要参与细胞实验,数据整理,实验数据分析等。
利益冲突
所有作者均声明不存在利益冲突。
参考文献
Wang PX, Sun YF, Zhou KQ, et al. Circulating tumor cells are an indicator for the administration of adjuvant transarterial chemoembolization in hepatocellular carcinoma: a single-center, retrospective, propensity-matched study[J]. Clin Transl Med, 2020, 10(3):e137. doi:10.1002/ctm2.137. [百度学术]
Zheng R, Qu C, Zhang S, et al. Liver cancer incidence and mortality in China: temporal trends and projections to 2030[J]. Chin J Cancer Res, 2018, 30(6):571-579. doi:10.21147/j.issn.1000-9604.2018.06.01. [百度学术]
Chen J, Gingold JA, Su XP. Immunomodulatory TGF-β signaling in hepatocellular carcinoma[J]. Trends Mol Med, 2019, 25(11):1010-1023. doi:10.1016/j.molmed.2019.06.007. [百度学术]
Lei X, Lei Y, Li JK, et al. Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy[J]. Cancer Lett, 2020, 470:126-133. doi:10.1016/j.canlet.2019.11.009. [百度学术]
Han C, Jiang YJ, Wang ZX, et al. Natural killer cells involved in tumour immune escape of hepatocellular carcinomar[J]. Int Immunopharmacol, 2019, 73:10-16. doi:10.1016/j.intimp.2019.04.057. [百度学术]
Li JJ, Wang JH, Tian T, et al. The liver microenvironment orchestrates FGL1-mediated immune escape and progression of metastatic colorectal cancer[J]. Nat Commun, 2023, 14(1):6690. doi:10.1038/s41467-023-42332-0. [百度学术]
Beaulieu ME, Castillo F, Soucek L. Structural and biophysical insights into the function of the intrinsically disordered myc oncoprotein[J]. Cells, 2020, 9(4):1038. doi:10.3390/cells9041038. [百度学术]
Muthalagu N, Monteverde T, Raffo-Iraolagoitia X, et al. Repression of the type I interferon pathway underlies MYC- and KRAS-dependent evasion of NK and B cells in pancreatic ductal adenocarcinoma[J]. Cancer Discov, 2020, 10(6):872-887. doi:10.1158/2159-8290.CD-19-0620. [百度学术]
de Jonge AV, Mutis T, Roemer MGM, et al. Impact of MYC on anti-tumor immune responses in aggressive B cell non-hodgkin lymphomas: consequences for cancer immunotherapy[J]. Cancers, 2020, 12(10):3052. doi:10.3390/cancers12103052. [百度学术]
Cui X, Hu ZP, Li Z, et al. Overexpression of chaperonin containing TCP1, subunit 3 predicts poor prognosis in hepatocellular carcinoma[J]. World J Gastroenterol, 2015, 21(28):8588-8604. doi:10.3748/wjg.v21.i28.8588. [百度学术]
Xu W, Liu S, Zhang G, et al. Knockdown of METTL5 inhibits the Myc pathway to downregulate PD-L1 expression and inhibits immune escape of hepatocellular carcinoma cells[J]. J Chemother, 2023, 35(5):455-464. doi:10.1080/1120009X.2022.2143614. [百度学术]
Salama ME, Khairy DA. Immunohistochemical expression of programmed death ligand 1(PDL1) in endometrial carcinoma and its relation to CD4 and CD8 positive immune cells[J]. Asian Pac J Cancer Prev, 2022, 23(7):2491-2496. doi:10.31557/APJCP.2022.23.7.2491. [百度学术]
Subramaniam A, Shanmugam MK, Perumal E, et al. Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma[J]. Biochim Biophys Acta, 2013, 1835(1):46-60. doi:10.1016/j.bbcan.2012.10.002. [百度学术]
Tai WT, Chu PY, Shiau CW, et al. STAT3 mediates regorafenib-induced apoptosis in hepatocellular carcinoma[J]. Clin Cancer Res, 2014, 20(22):5768-5776. doi:10.1158/1078-0432.CCR-14-0725. [百度学术]
Liu Y, Li PK, Li CL, et al. Inhibition of STAT3 signaling blocks the anti-apoptotic activity of IL-6 in human liver cancer cells[J]. J Biol Chem, 2010, 285(35):27429-27439. doi:10.1074/jbc.M110.142752. [百度学术]
Sui Q, Zhang J, Sun X, et al. NK cells are the crucial antitumor mediators when STAT3-mediated immunosuppression is blocked in hepatocellular carcinoma[J]. J Immunol, 2014, 193(4):2016-2023. doi:10.4049/jimmunol.1302389. [百度学术]
Wei D, Le X, Zheng L, et al. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis[J]. Oncogene, 2003, 22(3):319-329. doi:10.1038/sj.onc.1206122. [百度学术]
Goodwin JF, Knudsen KE. Beyond DNA repair: dna-PK function in cancer[J]. Cancer Discov, 2014, 4(10):1126-1139. doi:10.1158/2159-8290.CD-14-0358. [百度学术]
Goodwin JF, Kothari V, Drake JM, et al. DNA-PKcs-mediated transcriptional regulation drives prostate cancer progression and metastasis[J]. Cancer Cell, 2015, 28(1):97-113. doi:10.1016/j.ccell.2015.06.004. [百度学术]
He SS, Chen Y, Shen XM, et al. DNA-dependent protein kinase catalytic subunit functions in metastasis and influences survival in advanced-stage laryngeal squamous cell carcinoma[J]. J Cancer, 2017, 8(12):2410-2416. doi:10.7150/jca.20069. [百度学术]
Cornell L, Munck JM, Alsinet C, et al. DNA-PK-a candidate driver of hepatocarcinogenesis and tissue biomarker that predicts response to treatment and survival[J]. Clin Cancer Res, 2015, 21(4):925-933. doi:10.1158/1078-0432.CCR-14-0842. [百度学术]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4):402-408. doi:10.1006/meth.2001.1262. [百度学术]
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(10204):1145-1158. doi:10.1016/S0140-6736(19)30427-1. [百度学术]
Forner A, Reig M, Bruix J. Hepatocellular carcinoma [J]. Lancet, 2018, 391(10127):1301-1314. doi:10.1016/S0140-6736(18)30010-2. [百度学术]
张虹, 晁旭. 肝癌发生免疫逃逸机制的研究进展[J]. 中西医结合肝病杂志, 2022, 32(10):953-956. doi:10.3969/j.issn.1005-0264.2022.010.025. [百度学术]
Zhang H, Chao X. Progress of immune escape mechanism in hepatocellular carcinoma[J]. Chinese Journal of Integrated Traditional and Western Medicine on Liver Diseases, 2022, 32(10):953-956. doi:10.3969/j.issn.1005-0264.2022.010.025. [百度学术]
Mo Z, Lu H, Mo S, et al. Ultrasound-guided radiofrequency ablation enhances natural killer-mediated antitumor immunity against liver cancer[J]. Oncol Lett, 2018, 15(5):7014-7020. doi:10.3892/ol.2018.8231. [百度学术]
Hanlon MM, Rakovich T, Cunningham CC, et al. STAT3 mediates the differential effects of oncostatin M and TNFα on RA synovial fibroblast and endothelial cell function[J]. Front Immunol, 2019, 10:2056. doi:10.3389/fimmu.2019.02056. [百度学术]
Wang T, Fahrmann JF, Lee H, et al. JAK/STAT3-Regulated Fatty Acid beta-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance[J]. Cell Metab, 2018, 27(1):136-150. doi: 10.1016/j.cmet.2017.11.001. [百度学术]
赵冀安, 刘文聪, 孙会凤, 等. JAK2/STAT3信号通路在肝细胞性肝癌中表达及意义[J]. 中国普通外科杂志, 2016, 25(1):83-89. doi:10.3978/j.issn.1005-6947.2016.01.013. [百度学术]
Zhao JA, Liu WC, Sun HF, et al. Expression of JAK2/STAT3 signaling pathway in human hepatocellular carcinoma and its significance[J]. China Journal of General Surgery, 2016, 25(1):83-89. doi:10.3978/j.issn.1005-6947.2016.01.013. [百度学术]
Li Y, Song Z, Han Q, et al. Targeted inhibition of STAT3 induces immunogenic cell death of hepatocellular carcinoma cells via glycolysis[J]. Mol Oncol, 2022, 16(15):2861-2880. doi:10.1002/1878-0261.13263. [百度学术]
Wang TH, Niu GL, Kortylewski M, et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells[J]. Nat Med, 2004, 10(1):48-54. doi:10.1038/nm976. [百度学术]
Zou S, Tong Q, Liu B, et al. Targeting STAT3 in cancer immunotherapy[J]. Mol Cancer, 2020, 19(1):145. doi:10.1186/s12943-020-01258-7. [百度学术]
Christofi T, Baritaki S, Falzone L, et al. Current perspectives in cancer immunotherapy[J]. Cancers, 2019, 11(10):1472. doi:10.3390/cancers11101472. [百度学术]
Zhang F, Hu KS, Liu WF, et al. Oxaliplatin-resistant hepatocellular carcinoma drives immune evasion through PD-L1 up-regulation and PMN-singular recruitment[J]. Cell Mol Gastroenterol Hepatol, 2023, 15(3):573-591. doi:10.1016/j.jcmgh.2022.12.002. [百度学术]
Chen J, Jiang CC, Jin L, et al. Regulation of PD-L1: a novel role of pro-survival signalling in cancer[J]. Ann Oncol, 2016, 27(3):409-416. doi:10.1093/annonc/mdv615. [百度学术]
Ghozlan H, Showalter A, Lee E, et al. Chaperonin-containing TCP1 complex (CCT) promotes breast cancer growth through correlations with key cell cycle regulators[J]. Front Oncol, 2021, 11:663877. doi:10.3389/fonc.2021.663877. [百度学术]
Czerwinska P, Mackiewicz AA. Mining transcriptomic data to uncover the association between CBX family members and cancer stemness[J]. Int J Mol Sci, 2022, 23(21):13083. doi:10.3390/ijms232113083. [百度学术]
Chen N, Fang W, Zhan J, et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation[J]. J Thorac Oncol, 2015, 10(6):910-923. doi:10.1097/JTO.0000000000000500. [百度学术]
Wang S, Yao F, Lu X, et al. Temozolomide promotes immune escape of GBM cells via upregulating PD-L1[J]. Am J Cancer Res, 2019, 9(6):1161-1171. [百度学术]
Wu SY, Xiao Y, Wei JL, et al. MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer[J]. J Immunother Cancer, 2021, 9(7):e002528. doi:10.1136/jitc-2021-002528. [百度学术]
Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy[J]. Nature, 2005, 434(7035):917-921. doi:10.1038/nature03445. [百度学术]
Chae YK, Anker JF, Carneiro BA, et al. Genomic landscape of DNA repair genes in cancer[J]. Oncotarget, 2016, 7(17):23312-23321. doi:10.18632/oncotarget.8196. [百度学术]
Zhang Y, Yang WK, Wen GM, et al. High expression of PRKDC promotes breast cancer cell growth via p38 MAPK signaling and is associated with poor survival[J]. Mol Genet Genomic Med, 2019, 7(11):e908. doi:10.1002/mgg3.908. [百度学术]
Tan KT, Yeh CN, Chang YC, et al. PRKDC: new biomarker and drug target for checkpoint blockade immunotherapy[J]. J Immunother Cancer, 2020, 8(1):e000485. doi:10.1136/jitc-2019-000485. [百度学术]
Miao Z, Li J, Wang Y, et al. Hsa_circ_0136666 stimulates gastric cancer progression and tumor immune escape by regulating the miR-375/PRKDC Axis and PD-L1 phosphorylation[J]. Mol Cancer, 2023, 22(1):205. doi:10.1186/s12943-023-01883-y. [百度学术]
Cai D, Zhao Z, Hu J, et al. Identification of the tumor immune microenvironment and therapeutic biomarkers by a novel molecular subtype based on aging-related genes in hepatocellular carcinoma[J]. Front Surg, 2022, 9:836080. doi:10.3389/fsurg.2022.836080. [百度学术]
Fan Y, Liang Y, Liu Y, et al. PRKDC promotes hepatitis B virus transcription through enhancing the binding of RNA Pol Ⅱ to cccDNA[J]. Cell Death Dis, 2022, 13(4):404. doi:10.1038/s41419-022-04852-3. [百度学术]